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ForceCtrl: Hand-Raycasting with User-Defined
Pinch Force for Control-Display Gain Application

Seo Young Oh, Junghoon Seo, Juyoung Lee, Boram Yoon, Sang Ho Yoon, and Woontack Woo

Abstract—We present ForceCtrl, a novel 3D hand raycasting1

technique that enhances pointing precision based on control-2

display (CD) gain controlled with user-defined pinch force. We3

introduce a target-agnostic approach for refining raycasting4

precision, overcoming limitations in human motor accuracy.5

User-defined pinch force, detected with surface electromyogra-6

phy (sEMG), enables users to easily activate or deactivate CD7

gain during interaction. We propose three CD gain strategies8

and compare them through target selection and placement tasks.9

Our system reduces selection errors, placement jitters, and10

user workload, especially for distant targets in high-difficulty11

tasks. These results highlight the effectiveness of applying CD12

gain to hand raycasting and demonstrate the potential of user-13

defined pinch force as a robust input modality for precise hand14

interaction in AR/VR.15

Index Terms—Hand Interaction, Force-based Interaction, Vir-16

tual and Augmented Realities, Input Accuracy, Raycasting17

I. INTRODUCTION18

RECENT advances in graphics and display technologies in19

Augmented Reality (AR) and Virtual Reality (VR) have20

enabled the visualization of complex 3D environments, often21

populated with small and densely packed targets. As users22

increasingly interact with such complicated spatial data, the23

need for accurate and robust pointing techniques becomes crit-24

ical for both productivity and user experience. While previous25

approaches have attempted to reduce interaction complexity26

by controlling the density or layout of 3D content [1], [2],27

this strategy is unsuitable in professional domains such as28

computer-aided design or data visualization, where arbitrary29

rearrangement hinders interpretation and workflow efficiency.30

Raycasting is one of the most widely adopted pointing31

techniques in AR/VR, particularly effective for selecting out-32

of-reach targets [3]. Among its variants, hand raycasting is33

especially valuable in scenarios where seamless transitions34
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between physical and virtual interactions are needed, as it 35

does not rely on a handheld device. However, raycasting is 36

greatly affected by human motor abilities [4] and tracking 37

quality [5], [6], making it less suitable for high-precision tasks. 38

To improve interaction with complex 3D environments, we 39

focus on two key challenges: 1) enhancing raycasting precision 40

and 2) enabling precision control without handheld devices. 41

Several techniques have been proposed to improve ray- 42

based selection, such as object rating systems [7], [8] and 43

pointing prediction models [9]–[11]. While effective in spe- 44

cific contexts, these methods often depend on specific tar- 45

gets or remain limited by human motor accuracy, reducing 46

their generalizability. To address these issues, we introduce 47

a target-agnostic pointing refinement method by applying 48

control–display (CD) gain to the ray itself, reducing sensitivity 49

to fine motor noise. Drawing from the concept of CD ratio 50

in previous 2D and 3D interaction techniques, we define and 51

compare three strategies for applying CD gain to raycasting. 52

Although bare-hand interaction offers significant advantages 53

over device-based interactions as it preserves natural hand 54

movement, it faces challenges due to limited input modalities. 55

While gaze-based input is often paired with hand interac- 56

tion [12], [13], it is less effective for rapid mode switching and 57

small targets [14], [15]. To augment hand raycasting without 58

introducing physical constraints, we leverage a familiar selec- 59

tion trigger such as a pinch gesture and measure its intensity 60

using surface electromyography (sEMG). Unlike prior force- 61

based systems that rely on fixed force thresholds [16], [17], 62

our approach utilizes user-defined force levels based on a 63

subjective scale [18], allowing force-based input that accounts 64

for individual differences in force exertion and perception. 65

We present ForceCtrl, a novel 3D input technique that en- 66

ables users to control the CD ratio of hand raycasting through 67

user-defined pinch force. Our goal is to enhance the scalability 68

of hand raycasting to better support the growing diversity 69

of tasks in AR/VR environments. By leveraging pinch force, 70

ForceCtrl provides unobtrusive control of the CD ratio, without 71

requiring disruptive gestures or interrupting ongoing pointing 72

tasks. In the following sections, we introduce user-defined 73

pinch force as a robust input modality for interaction state 74

control (Fig. 1(a)), and propose three CD gain strategies to 75

refine ray precision (Fig. 1(b)). We demonstrate that ForceCtrl 76

improves the pointing performance in high-precision tasks, and 77

reveal the benefits of ray convergence and the drawbacks of 78

visual discontinuity across different CD gain strategies. These 79

findings contribute to advancing 3D interaction techniques for 80

complex AR/VR environments and encouraging its adoption 81

in professional and high-precision use cases. 82
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Fig. 1. Overview of ForceCtrl. (a) Users control pointing precision via pinch force detected by an sEMG armband. The ray behaves normally without force
and shifts for increased precision when force is applied. (b) We propose and compare three CD gain strategies activated by force: CDHandPos scales hand
movement; CDRayDir scales directional change; and CDRayRev applies the scaled directional change in reverse. The strategies are detailed in Section III.C.

II. RELATED WORKS83

A. Precise Ray Pointing84

As one of the most common 3D interaction methods, ray-85

casting allows users to point and select out-of-reach targets [3].86

However, the raycasting method is highly dependent on human87

motor ability [4], [19], and sensitive to even small move-88

ments [20], [21]. Also, ironically, raycasting becomes less89

accurate at greater distances [22]. Various assistive techniques90

have been proposed, including expanding selection volume [1],91

[23], [24], hierarchical disambiguation [25]–[28], and object92

rating systems [4], [7], [8]. While these methods reduce93

user’s burden of accurate pointing, their reliance on specific94

targets limits their applicability to other tasks, such as target95

placement. Although computational models can predict the96

ray’s landing pose [9]–[11], pointing resolution is still confined97

by human motor limitations.98

Applying a CD gain to a pointing method can mitigate the99

limitations of human motor ability [19], [29]. While CD gain100

has been used in direct 3D interaction for target selection [2],101

[30], placement [22], [31], and manipulation [32], its appli-102

cation in distant 3D interaction remains underexplored. Dual-103

precision pointing [33], or hybrid pointing [34], [35], improves104

distal pointing accuracy by separating ballistic and corrective105

phases. However, most mid-air dual-precision techniques are106

limited to pointers projected on surfaces [36]–[38]. Prior CD107

gain applications for raycasting have focused on handheld108

devices [39], [40]. We aim to define a CD ratio for hand109

raycasting, which differs from handheld raycasting in terms110

of ray origin and extrapolation.111

B. Hand Interactions112

Mid-air hand interaction enables natural and expressive113

interaction for various tasks such as object retrieval [41]–[43]114

and mode switching [44], [45], without the need for external115

devices. It is especially well suited for AR, where seamless116

transitions between virtual and physical contexts are important.117

Hand raycasting, in particular, has demonstrated performance118

comparable to handheld controllers given high-quality hand119

tracking [6], [46]. Although gaze-based interaction presents120

a hands-free alternative, its high variability [47], inherent 121

Midas touch problem [48], and limited accuracy for small 122

targets [14], [15] make hand interaction a more reliable choice. 123

Pinch gestures [20] have been widely studied for their 124

intuitive nature and innate tactile feedback. Often employed 125

as a selection trigger in hand [28], [49], [50] or gaze raycast- 126

ing [13], [46], [50]–[52], pinch offers fast [53] and temporally 127

precise input [54]. It has also been used for depth control [55], 128

clutching [14], [56], and 3D interaction tasks such as grasp- 129

ing [57], pivoting [58], and bimanual manipulation [12], [59], 130

[60]. However, limiting pinch to binary triggers underutilizes 131

its potential. Recent studies have explored richer input through 132

semi-pinch state [2], [13] or continuous pinch scaling [61]. 133

Building on this, we integrate multiple levels of pinch force, 134

leveraging its natural tactile feedback. 135

C. Force-based Interactions 136

Force-based interactions have been widely studied in 2D 137

contexts, particularly in mobile [62] and tabletop settings [63]. 138

These studies have introduced force to enable additional 139

actions [17], [64] or adjust input parameters [16], [65]. In 140

particular, studies that used force or pressure to control input 141

precision [66], [67] suggest its potential to enhance pointing 142

accuracy. In contrast, force-based interactions in 3D has re- 143

ceived limited attention. It has mainly focused on mimicking 144

real-world physics [68], [69] and has not been extensively 145

explored as a novel input modality. 146

The forearm-worn sEMG has long been investigated for 147

hand interactions [70]–[72] due to its non-invasive nature [73]. 148

Although numerous models for sEMG-based finger or pinch 149

force estimation have been proposed, few consider users 150

subjectivity and individual differences. Most models employ 151

direct force regression [69], [74], [75], yielding objective 152

values. Similarly, force level classification typically defines 153

levels based on ground truth force [76] or Maximum Voluntary 154

Contraction (MVC) [77], [78]. Instead, our model classifies 155

user-defined force levels to account for user variability in 156

physical ability and perception. 157
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III. FORCE CLASSIFICATION MODEL158

The force classification model forms the foundation of159

our system, enabling reliable recognition of multiple levels160

of pinch force to provide explicit control over interaction161

parameters. The model classifies user-defined pinch force162

leveraging forearm EMG signals, accommodating individual163

differences in muscle strength and perception. This section164

first describes a preliminary study to determine feasible force165

levels for interaction, followed by the design and evaluation166

of machine learning models for force classification.167

A. Preliminary Study on User-Defined Pinch Force168

Our aim is to employ subjectively determined pinch force169

as a robust input, addressing individual differences in muscle170

ability and perception. We first validated whether users can171

distinguish multiple levels of pinching force under a sub-172

jective scale. From previously observed correlation between173

the perceived force intensity and objective measures in hand174

activities [79], [80], we assumed that the correlation would175

hold the same for the pinch force exertion.176

We recruited 12 participants (7 male, 5 female, ages 22–177

32, M = 28.5,SD = 3.37) with the institutional review board’s178

approval. The participants were equipped with a force sen-179

sor (CS8-100N, Singletact) on the thumb. The Borg Category180

Ratio Scale 10 (Borg Scale) [18], which comprises numbers181

from 0 to 10, has been commonly used to quantify perceived182

force intensity by assessing muscle fatigue. We measured183

four in-between force intensities that are noted with verbal184

anchors, “2:Weak”, “3:Moderate”, “5:Strong”, and “7:Very185

Strong”, as verbal anchors are the key factor of the scale186

for quantizing user’s experience. We excluded the extremities187

from the scale, as such force levels are either impractical188

for repeated execution or less suitable for stable sensing in189

interaction. We collected 4 trials for each level in a balanced190

order, obtaining 16 measurements in total. We also captured191

the MVC of each participant for analysis.192

We found a cross-user linear relationship between Borg193

Scale and %MVC with a regression coefficient of 9.72 (r2 =194

.83,F(1,238) = 1189, p < .001). %MVC value was calculated195

by dividing the measured force by the MVC of the participant196

in Newtons. The results suggest a common pinch force ex-197

ertion behavior among participants under the Borg Scale. We198

also performed a within-participant linear regression, where199

the regression coefficient ranged in 9.72± 0.97 (r2 = 0.88±200

0.05). We confirmed users can consistently exert the same201

pinch force at a given Borg Scale level.202

It was also suggested that force levels should be at least203

three Borg Scale units away from each other to ensure discerni-204

bility. For each participant, we compared the four force levels205

in %MVC. If the measured force intensities of two paired force206

levels did not make a significant difference, we assumed that207

the participant did not clearly distinguish the two levels. The208

result showed that there were 7 participants who were unable209

to make a significant difference for the “2:Weak” & “3:Moder-210

ate” pair, two participants for the “3:Moderate” & “5:Strong”211

pair, and another two participants for the “5:Strong” & “7:Very212

Strong” pair. Accordingly, also considering the stability of213

Fig. 2. Force classifier training. (a) Data collection setup and procedure,
(b) collected data, (c) training conditions, and (d) classification output.

sEMG signal, we selected “3:Moderate” & “7:Very Strong” 214

pair as the input to our system. 215

B. Classification of User-Defined Pinch Force 216

We explored multiple machine learning models to clas- 217

sify the Borg Scale ratings using forearm EMG signals. We 218

recorded forearm EMG signals using an armband with 8 elec- 219

trodes1. It should be noted beforehand that our methodologies 220

and findings are not confined to a specific device, and could 221

potentially be extended to alternative EMG-based devices. 222

Data were collected from 12 participants (6 male, 6 female, 223

ages 22–37, M = 28,SD = 4.92), at three Borg Scale lev- 224

els (“0:None”, “3:Moderate”, “7:Very Strong”) across four ses- 225

sions per participant later excluding the first session (Fig. 2(a)). 226

Each trial involved a 4-second pinch and we analyzed the 227

middle 2 seconds (Fig. 2(b)) yielding 10.8 minutes of data. 228

We evaluated five distinct models for force classifica- 229

tion: logistic regression, a 3-layer neural network, SVM, 230

XGBoost [81], and CNN [69]. We performed tests under 231

three conditions (Fig. 2(c)): cross-user (generalization across 232

users), inter-session (consistency over sessions), and intra- 233

session (performance with session-specific calibration). Par- 234

ticipants were split into four groups for cross-user testing, one 235

group for testing and the rest for training, resulting in a 4- 236

fold split. In the inter-session condition, one of three sessions 237

per user was set as test data, forming 36 training-test pairs. 238

For intra-session testing, one of three trials per session was 239

used for testing, creating 108 pairs. The classifier was trained 240

to recognize the three force levels: “0:None”, “3:Moderate”, 241

“7:Very Strong” (Fig. 2(d)). 242

In the cross-user condition, the model accuracy ranged from 243

35.99% to 79.12% with CNN performing best but impractical. 244

In inter-session tests, CNN outperformed logistic regression 245

but showed no significant advantage over SVM and XG- 246

Boost in paired t-tests. Pre-training and temporal aggregation 247

improved CNN’s median accuracy to 93.35% though still 248

insufficient. In intra-session tests, CNN significantly outper- 249

formed all models and reached 99.65% accuracy with pre- 250

training and temporal aggregation. Due to its high intra-session 251

performance, we adopted CNN in our system (Fig. 3(a)). 252

To address the reliability issues of EMG-based systems from 253

motion noise and equipment problems [73], we added a history 254

accumulator. Our system updates the force level only when 255

1Thalmic Labs Myo armband: https://github.com/thalmiclabs

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3647547

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on February 05,2026 at 10:23:07 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 3. System architecture of ForceCtrl. (a) A pre-trained CNN processes 8-channel sEMG data and classifies it into three force levels. (b) The output is
post-processed with motion data using a history accumulator. (c) The final classification, combined with hand pose, determines the interaction state.

the history accumulator is filled with the same class for 60256

frames, for both responsiveness and stability (Fig. 3(b)). We257

also integrated IMU signals, assuming users would not change258

pinch force during rapid hand movements. When hand velocity259

exceeds the threshold, the history accumulator does not update.260

If the output of the force history accumulator is consistent261

over 50 ms, we combine it with the hand pose tracked by the262

headset and alter the system’s interaction state (Fig. 3(c)). The263

interaction state remains unchanged for 0.6 s after a change264

to ensure stability. By combining EMG and IMU data with265

temporal aggregation, our system improves force classification266

reliability.267

IV. FORCECTRL SYSTEM268

ForceCtrl is designed to improve the accuracy of hand269

raycasting in a target-agnostic manner, supporting both precise270

selection and placement. Built on the force classification271

model, it enables explicit control of pointing precision: the272

ray becomes more precise as pinching force increases. The273

system allows seamless alteration of pointing precision without274

disrupting users’ workflow.275

A. Interaction States276

Without any force exertion detected by the force classifica-277

tion model, the system operates as usual, in the same way as278

the standard hand raycasting. When the index finger is open,279

the pointer is in the coarse pointing state (Fig. 4(a)). When a280

pinch gesture is recognized, the pointer turns into the coarse281

dragging state, considered to be clicked (Fig. 4(b)).282

When users require grater pointing accuracy, they can acti- 283

vate the precise states by applying the pinching force. A force 284

of “3:Moderate” triggers the precise pointing state (Fig. 4(c)). 285

In this state, the pointer’s movement is damped, as detailed 286

later in this section, enabling more sensitive control with 287

the same hand movement. This mapping, where a stronger 288

pinch results in smaller ray movement, may feel intuitive as 289

it resembles the metaphor of drag force. 290

Then, the force of “7:Very Strong” triggers the precise 291

dragging state (Fig. 4(d)). Pointer movement is also damped 292

in this state. With increased pinching force, users can either 293

select an object with a brief click or grab it by maintaining 294

the force. Although the exertion of “7:Very Strong” can be 295

physically demanding, this state is expected to be held only 296

briefly in typical use. 297

B. State Transitions 298

Pinch can activate three different states: coarse dragging, 299

precise pointing, and precise dragging. Upon detecting a pinch 300

gesture, the system awaits the next output from the classifica- 301

tion model. If the classified force level is “0:None”, coarse 302

dragging state is activated. A force level of “3:Moderate” 303

triggers the precise pointing state. No transition occurs when 304

the force is classified as “7:Very Strong” at the moment of 305

pinch. Notably, the states are not sequential; although the user 306

naturally transition through the intermediate levels, the 50 ms 307

window systematically allows direct activation of the states. 308

The precise dragging state is only accessible when the 309

pointer is already in either the coarse dragging or precise 310

Fig. 4. Interaction state transitions. (a) Coarse pointing, (b) coarse dragging, (c) precise pointing, and (d) precise dragging. Upon a pinch, the system waits
for the next force classification and transitions to either coarse dragging or precise pointing. Precise dragging is only reachable from these two. Releasing the
pinch returns the system to coarse pointing.
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Fig. 5. Three ray shifting strategies. (a) CDHandPos, (b) CDRayDir,
(c) CDRayRev. Top row: the ray transformation process to apply CD gain;
bottom row: the resulting output ray. P is the hand’s position, P′ is the CD
gain-applied position. v⃗ is the vector of the pointing ray, v⃗′ is the CD gain-
applied vector. O and O′ are the origins of the pointing ray.

pointing state. This transition logic assumes that users are311

unlikely to change both precision and selection state simulta-312

neously. The system allows returning from precise dragging to313

precise pointing, enabling actions such as consecutive clicks.314

However, transitioning directly from precise dragging to coarse315

dragging is not permitted, as we assume users would not316

attempt to “reset” the pointer mid-drag. Users can always exit317

to the coarse pointing state by releasing the pinch.318

C. Ray Shifting319

While the CD ratio is well defined in 2D pointing, the320

concept becomes less clear in 3D ray-based pointing, where321

the ray extends infinitely and lacks a fixed endpoint. To address322

this, we propose three approaches, each applied to a different323

component of the ray. To ensure broader applicability, all324

approaches are designed to be target-agnostic, making them325

suitable for both target selection and placement tasks. We im-326

plemented the system using discrete force-based states rather327

than a continuous force-to-gain mapping to support multiple328

interaction modes and ensure robust interaction. Discrete states329

allow four functionally distinct phases, whereas continuous330

scaling would permit only two: pinching and not pinching.331

Prior work also showed that implicit transition results in sig-332

nificantly lower performance and preference for small targets333

than using a discrete mode switch [36].334

CDHandPos. A straightforward approach is to treat the335

real hand as the control input and the virtual hand as the336

display output [2], applying the CD gain to the real hand’s337

translation to determine the virtual hand’s position (Fig. 5(a)).338

Specifically, the 3D displacement of the hand is scaled by the339

CD gain and added to the virtual hand’s previous position:340

P′
next = P′

prev + (Pnext −Pprev)× gCD. Likewise, the change in341

ray direction is scaled and added to the previous ray direction:342

v⃗′next = v⃗′prev+(⃗vnext − v⃗prev)×gCD. This effectively extrapolates343

the ray through the modified hand position. Note that the344

virtual hand is a conceptual construct and is not rendered to345

the user. Although simple, this method can cause the ray to346

visually detach from the user’s hand, potentially leading to 347

dissonance in the user experience. 348

CDRayDir. Inspired by prior work that damped rotational 349

changes in handheld raycasting [39], [40], this second ap- 350

proach scales the directional change of the ray (Fig. 5(b)). In 351

this method, the hand position remains unchanged, while the 352

change in ray direction is scaled by the CD gain and applied 353

to the previous direction: v⃗′next = v⃗′prev + (⃗vnext − v⃗prev)× gCD. 354

This maintains visual continuity between the ray and the hand, 355

reducing the disconnection introduced in the previous method. 356

In terms of the CD ratio, the control input is the change in ray 357

direction, and the display output is the adjusted ray direction. 358

However, as the ray continues to diverge, pointing resolution 359

still decreases with distance, though to a lesser extent. 360

CDRayRev. To address not only human motor limitations 361

but also pointing resolution at a distance, we developed a third 362

approach (Fig. 5(c)). Consider a hypothetical target: consistent 363

with the purpose of the CD gain, its movement should follow 364

the user’s hand with reduced displacement [22], [31]. To 365

achieve this in a target-agnostic manner, we counteract hand 366

movement by reversing and scaling the directional change of 367

the ray: v⃗′next = v⃗′prev − (⃗vnext − v⃗prev)× gCD. This causes the 368

ray to gradually converge, reducing the apparent motion of a 369

distant point along the ray. Although the CD gain is applied 370

to the ray direction, this control-display relationship can be 371

interpreted as hand translation (control) resulting in scaled 372

movement of an imaginary target along the ray (display). This 373

results in higher precision as the pointing distance increases. 374

D. Implementation of CD Gain 375

We determined different CD gains for each of the three 376

proposed methods. Previous studies have shown that appro- 377

priate CD gain values for pointing techniques can be derived 378

from the device characteristics and human factors [29], [33]. 379

Following these frameworks, we calculated CD gains that do 380

not trigger clutching or precision issues. 381

Device characteristics were based on the technical specifica- 382

tions of the Meta Quest 32, used in our implementation, while 383

human factors were drawn from the literature [82], [83]. We 384

assumed optimal performance of vision-based hand tracking, 385

such that input resolution is limited solely by human motor 386

ability. Additionally, the input device’s operating range was 387

assumed to match its field of view (FoV), since visual feedback 388

is lost beyond it regardless of tracking. 389

CD gains were configured to produce an angular resolution 390

between 0.34° to 0.43° at a distance of 2 m with a hand 391

movement of 1.5°. This allows the smallest hand motion 392

to reliably target objects as small as 1° at 2 m, which is 393

considerably small yet clearly visible. The CD gain values for 394

CDHandPos, CDRayDir, and CDRayRev were 0.29, 0.038, 395

and 0.025. 396

V. USER EXPERIMENT 397

We aimed to evaluate the impact of the ForceCtrl system 398

and the three CD-gain-based pointing strategies. To reflect 399

2Meta Quest 3:https://www.meta.com/kr/en/quest/quest-3
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real-world AR/VR use cases, we adopted object positioning400

task [84], following prior work [2], [22]. The task was divided401

into two parts—a selection task and a placement task—to402

enable separate analysis of objective performance measures.403

The proposed pointing methods were implemented based on404

the raycasting capabilities of the Meta XR Interactions SDK3.405

The baseline condition (Baseline) used the SDK’s default406

raycasting. Surface EMG data were collected using a Thalmic407

Labs Myo armband. The interaction system was built on Unity408

2021.3.22f14 running on Windows 11. All data collection was409

conducted on a PC equipped with an Nvidia GeForce RTX410

3090 GPU and an Intel Core i7-11700K CPU, with a Meta411

Quest 3 connected via Meta Quest Air Link.412

A. Experiment Design413

We recruited 16 participants (8 male, 8 female, 22–33,414

M = 27.6,SD = 3.6, all right-handed) through the institute’s415

online community board. All participants self-identified as416

intermediate to expert users of hand raycasting in AR/VR:417

7 reported moderate experience, 7 used it extensively, and 2418

used it daily. The experiment was approved by the institutional419

review board and all participants provided their informed420

consent. Participants received $20 for 2 hours of participation.421

In the selection task, participants were asked to select a des-422

ignated target from a group of small, identical spheres. Each423

trial presented one target and 48 obstacle spheres distributed424

within a 20 cm cube. The target was colored yellow (Fig. 6(a))425

and turned blue upon selection (Fig. 6(b)). When pointed426

at, spheres were highlighted in cyan. The trial began when427

participants selected a “start” sphere and ended when they428

released the pinch after correct selection.429

The placement task required precisely aligning a spherical430

target within a cubic goal sized to enclose the sphere. The431

target-goal pair appeared at an eccentricity of 10° in the432

FoV, with the target on the non-dominant hand side and433

the goal on the opposite side. A semi-transparent reference434

sphere was displayed inside the cube to assist with accurate435

placement (Fig. 6(c)). The target was highlighted in green436

upon contact with the goal (Fig. 6(d)). Task completion time437

was measured from the first collision with the goal, capturing438

only the fine-tuning phase. The trial ended upon release if the439

target was in contact with the goal.440

Both tasks were conducted using a within-subject design441

with four Technique conditions and two Depth conditions.442

In the Close condition, targets were placed at a distance of443

1.0 m, beyond arm’s reach. In the Far condition, depths were444

set to 2.0 m for the selection task and 1.5 m for the placement445

task, since the latter required higher visual acuity due to its446

finer spatial demands. To minimize visual confounding, all447

targets were set to 35 mm in diameter, corresponding to 1° of448

visual angle at 2 m. While no formal standard exists for the449

3Meta XR Interactions SDK: https://developer.oculus.com/downloads/
package/meta-xr-interaction-sdk/

4Unity 2021.3.22f1: https://unity.com/kr/releases/editor/whats-new/2021.3.
21

Fig. 6. Experimental tasks. Selection task: (a-1) participants select the
yellow target; cyan indicates pointing, (a-2) blue indicates correct selection.
Placement task: (b-1) participants place a target into a cube; (b-2) green
indicates successful placement. The colored ray denotes precise states; and
thicker ray indicates dragging states.

minimum interactable size of virtual objects, we followed the 450

recommended size of UI buttons in AR5 to ensure visibility. 451

We tested four interaction techniques, using standard hand 452

raycasting as the baseline and comparing it with the three pro- 453

posed methods. With the Baseline, no force-triggered actions 454

were available, and only coarse states were used. We altered 455

line width and color to visualize precision and selection state, 456

with each proposed technique shown in a distinct color (red, 457

green, or blue) during precise states. For experimental control, 458

irrelevant interaction states were deactivated in each task. 459

In addition to task completion time, we recorded selection 460

errors in the selection task—counting incorrect selections on 461

obstacles or in empty space—and final offset in the place- 462

ment task. Subjective responses were collected through post- 463

condition questionnaires. Perceived workload was assessed 464

using the NASA Task Load Index (NASA-TLX) [85], with 465

scores ranging from 0 to 100. Participants also responded 466

to two 7-point Likert scale items assessing perceived task 467

performance (Q1: “I successfully executed the task.”; Q2: “I 468

successfully controlled the pointer.”). In the post-session ques- 469

tionnaire, participants indicated their most and least preferred 470

techniques, as well as the techniques they perceived as most 471

and least accurate. 472

The experiment included a total of 240 trials per partici- 473

pant. Each task was performed under two Depth conditions, 474

presented in order of distance as the Far condition was more 475

demanding. Four Technique conditions were counterbalanced 476

across participants. For each Depth×Technique combination, 477

participants completed three sets of five trials, with the first 478

set treated as practice and excluded from analysis. Trials were 479

timed out after 20 seconds, and participants rested at least 15 480

seconds between sets to reduce fatigue. Before the main tasks, 481

participants briefly calibrated the system by exerting each 482

of three force levels—“0:None”, “3:Moderate”, and “7:Very 483

Strong”—once, based on the Borg Scale. A short verification 484

stage followed in which participants tested a series of force 485

levels. After being introduced to the system, they practiced all 486

5Buttons—Mixed Reality: https://learn.microsoft.com/windows/
mixed-reality/design/button
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Fig. 7. Selection task results. (a) Task completion time, (b) number of selection errors, (c) Raw-TLX, (d) perceived execution, (e) perceived control.

Fig. 8. Placement task results. Top row: objective results. (a) Task completion time, (b) final offset between target and goal, (c) jitter standard deviation,
(d) jitter along X-axis, (e) jitter along Y-axis. Bottom row: subjective results. (f) Raw-TLX, (g) performance subscale, (h) frustration subscale, (i) perceived
execution, (j) perceived control.

four interaction states. During the experiment, participants re-487

sponded to the NASA-TLX and a post-condition questionnaire488

every 15 trials. After the selection task, participants completed489

a post-session questionnaire. The same procedure was repeated490

for the placement task.491

B. Quantitative Results492

For objective measures, we used a two-way repeated493

measures ANOVA (α = .05) after verifying normality with494

the Shapiro-Wilk test and sphericity with the Mauchly’s495

test. When assumptions were violated, we applied a two-496

way repeated measures ANOVA using Aligned Rank Trans-497

form (ART) [86] for non-parametric factorial analysis. All498

post-hoc pairwise comparisons were corrected using the499

Benjamini-Hochberg procedure. Subjective measures were500

analyzed using ART as well. Participants with an extreme501

number of timed-out trials or selection errors were excluded502

from the analysis.503

1) Selection task: Technique had a significant main effect 504

on task completion time (F(3,33) = 23.898, p < .001,η2
p = 505

.685). All ForceCtrl techniques increased completion time 506

compared to the Baseline (all p < .001; Fig. 7(a)). Tech- 507

nique also significantly affected the number of selection 508

errors (F(3,33) = 9.715, p < .001,η2
p = .469), with Baseline 509

resulting in more frequent incorrect selections than all three 510

ForceCtrl techniques (all p < .001; Fig. 7(b)). No significant 511

differences were observed in subjective workload among tech- 512

niques (Fig. 7(c)–(e)). 513

2) Placement task: Technique had a significant effect on 514

task completion time (F(3,33) = 3.370, p = .030,η2
p = .235), 515

with CDHandPos requiring more time than Baseline (p= .023; 516

Fig. 8(a)). For placement accuracy, measured as the offset 517

between the target and goal, only Depth showed a significant 518

main effect (F(1,11)= 17.674, p= .001,η2
p = .616; Fig. 8(b)). 519

We additionally analyzed the target’s jitter during the 520

alignment using the standard deviation of the target’s 521

position. Although only Depth had a significant effect 522
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Fig. 9. Qualitative ratings. (a) Positive and (b) negative ratings in the selection task, and (c) positive and (d) negative ratings in the placement task.

on overall jitter (F(1,11) = 18.965, p = .001,η2
p = .633;523

Fig. 8(c)), Technique significantly affected jitter along the524

X-axis (F(3,33) = 8.694, p < .001,η2
p = .441; Fig. 8(d)) and525

Y-axis (F(3,33) = 10.823, p < .001,η2
p = .496; Fig. 8(e)).526

Baseline resulted in greater fluctuations than CDHandPos (p<527

.001), CDRayDir (p < .001), and CDRayRev (p = .001)528

on the X-axis, all three techniques (all p < .001) in Y-529

axis. Depth also significantly increased jitter along X-530

axis (F(1,11) = 70.515, p < .001,η2
p = .865) and Y-axis531

(F(1,11) = 112.773, p < .001,η2
p = .911).532

For subjective measures in the placement task, Technique533

had a significant effect on Raw-TLX scores (F(3,33) =534

3.814, p = .019,η2
p = .257), with CDHandPos (p = .034) and535

CDRayRev (p = .022) reducing perceived workload com-536

pared to Baseline (Fig. 8(f)). Technique also affected the537

NASA-TLX performance subscale (F(3,33) = 16.701, p <538

.001,η2
p = .603) and frustration subscale (F(3,33) =539

5.977, p = .002,η2
p = .352). All ForceCtrl techniques were540

rated as significantly better in performance than Baseline (all541

p < .001; Fig. 8(g)). Baseline resulted higher frustration542

than CDHandPos (p = .005), CDRayDir (p = .011), and543

CDRayRev (p = .004). In terms of Depth, frustration was544

significantly higher in the Far condition compared to the Close545

condition(F(1,11) = 6.204, p = .030,η2
p = .361; Fig. 8(h)).546

Perceived task execution, measured on a 7-point547

Likert scale, was significantly affected by both548

Technique (F(3,33) = 12.587, p < .001,η2
p = .534) and549

Depth (F(1,11) = 14.533, p = .003,η2
p = .569). Participants550

rated their execution with Baseline significantly lower than551

with all three ForceCtrl techniques (all p < .001). Execution552

ratings also declined in the Far condition compared to Close.553

Additionally, a significant interaction between Technique and554

Depth was observed (F(3,33) = 3.704, p = .021,η2
p = .252).555

Perceived execution decreased with depth when556

using the Baseline technique (p = .006; Fig. 8(i)).557

Technique also significantly affected perceived558

control (F(3,33) = 12.139, p < .001,η2
p = .525),559

with participants reporting better control with three560

ForceCtrl techniques than with Baseline (all p < .001).561

A significant interaction between Technique and562

Depth (F(3,33) = 3.245, p = .034,η2
p = .228) indicated563

that perceived control declined with increased depth in the564

Baseline condition (p = .036; Fig. 8(j)).565

C. Qualitative Feedback 566

1) Selection task: Participants most frequently rated 567

CDRayDir as the most accurate technique in both 568

Close (58.3%) and Far (50.0%) conditions, followed by 569

CDRayRev in Close condition (33.3%) and CDHandPos in 570

Far condition (25.0%). Regarding preference, CDRayDir was 571

also the most preferred technique in both Close (50.0%) 572

and Far (33.3%) conditions (Fig. 9(a)). For the least 573

accurate ratings, CDHandPos was most frequently selected 574

in the Close condition (33.3%), while Baseline received 575

the highest proportion in the Far condition (50.0%). 576

CDHandPos was again selected most often as least preferred 577

technique (41.7% in both depth conditions), followed by 578

CDRayRev in Close condition (25.0%) and Baseline in Far 579

condition (33.3%) (Fig. 9(b)). 580

2) Placement task: CDRayRev was rated as the most accu- 581

rate technique in Close (41.7%) condition, while CDHandPos 582

was most often selected in Far condition (41.7%) followed 583

by CDRayRev (33.3%). In terms of preference, CDRayRev 584

was selected most frequently in both Close (50.0%) and 585

Far (41.7%) conditions (Fig. 9(c)). For least accurate, Base- 586

line was most frequently chosen in both Close (83.3%) and 587

Far (100.0%) conditions. CDRayDir was selected as the 588

least accurate in Close condition (16.7%), and the remaining 589

techniques received no votes in either condition. For least 590

preferred, Baseline was selected by the majority of participants 591

in both Close (83.3%) and Far (66.7%) conditions (Fig. 9(d)). 592

VI. DISCUSSION 593

The experimental results demonstrate that ForceCtrl enables 594

users to stabilize the pointer for precise interaction with small 595

and distant targets, while maintaining a comparable level 596

of perceived workload. Although the ForceCtrl techniques 597

resulted in slower task completion times, this was expected, as 598

the technique inherently involves an additional step for adjust- 599

ing the pointer. Importantly, the ForceCtrl techniques reduced 600

frustration and perceived performance difficulty, particularly in 601

high-precision tasks. Based on these results, we discuss three 602

key areas in this section: 1) the feasibility of using user-defined 603

force as an input modality, 2) the implications of applying CD 604

gain to raycasting, and 3) limitations and future directions. 605

Our goal is to provide a comprehensive interpretation of the 606
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findings and outline the potential for further development of607

precise pointing techniques in 3D environments.608

1) User-Defined Force as Input: The results suggest that the609

performance benefits from our method outweigh the required610

efforts to perform force-based input. As we used the user-611

defined values corresponding to “3:Moderate” and “7:Very612

Strong” as input levels, we anticipated higher physical load613

in compare to the standard raycasting due to additional force614

exertion. However, no significant increase in physical demand615

was observed in either the Raw TLX or its physical demand616

subscale. At the same time, participants reported reduced617

frustration and perceived performance difficulty with ForceCtrl618

techniques. These findings indicate that when users perceive619

substantial benefits—such as improved pointing accuracy in620

demanding tasks—they are more willing to accept the physical621

effort involved.622

Our findings also show that user-defined force can be623

generalized across individuals and used as a robust input624

approach. All 16 participants were able to successfully control625

the system with only a minimal calibration process, requiring626

a one-time measurement of three force levels. The system627

reliably classified users’ subjective force input, demonstrating628

both the robustness of the model and a common pattern in629

how users apply force. Moreover, participants were able to630

exert force consistently throughout the experiment, without631

noticeable fluctuation or decline over time. These results632

support the feasibility of user-defined force as a reliable input633

method for both the user and the system.634

2) CD Gain for Hand Raycasting: While the applica-635

tion of CD gain showed clear advantages over the Baseline636

technique, among the three proposed methods, CDRayRev637

with convergence was most preferred in high-difficulty tasks,638

whereas the visual detachment in CDHandPos negatively639

impacted user experience. In general, techniques rated highly640

in accuracy were also commonly rated as the most preferred.641

As task difficulty increased in the Far condition, differences642

in perceived performance became more pronounced. Despite643

all three proposed techniques requiring the same amount of644

force and offering comparable pointing resolution at the tested645

depths, participants’ subjective impressions varied consider-646

ably between techniques.647

Aligned with the quantitative results, the Baseline technique648

showed a clear drop in subjective performance as task dif-649

ficulty increased. While only 16.67% of participants rated650

Baseline as the least accurate in Close condition of the651

selection task, 100.00% of participants reported that Baseline652

was the least accurate in Far condition of the placement653

task. This disparity highlights its unsuitability for spatially654

demanding tasks. Participants pointed out that Baseline was655

“hard to control in high-difficulty tasks” (P16). Specifically,656

many responded that they had to “put both mental and657

physical effort to keep my arm steady” and some even “found658

myself holding my breath” (P14) and “felt frustration” (P16)659

with Baseline technique.660

CDRayDir was consistently rated as the most accurate and661

preferred technique in the selection task, and reported to be662

“intuitive” (P3) and “natural” (P9). However, in the place-663

ment task, where higher spatial accuracy is required, both the664

perceived accuracy and preference of CDRayDir decreased. 665

Participants reported that they were “able to control accuracy 666

without having to move my arm much” (P1), but “had the 667

lowest precision” (P1) at the same time. This indicates that 668

CDRayDir has a relatively subtle effect on precision, making 669

it suitable for moderate-difficulty tasks, but not sufficient for 670

high-difficulty tasks. Consequently, participants did not prefer 671

CDRayDir in the placement task reporting that “it didn’t really 672

feel effective while I still had to apply force” (P15). 673

In contrast, CDRayRev was rated highest in the placement 674

task in both perceived accuracy and preference. Four partic- 675

ipants perceived CDRayRev to be “most accurate” (P2–5), 676

and P4 reported that “it showed significantly less jitter when 677

stationary”. As the placement task required finer control, the 678

convergence of CDRayRev may have helped participants sta- 679

bilize their movements during precise object alignment. While 680

this technique deviates most from the standard raycasting, 681

the technique aligned most closely with participants’ mental 682

model, explicitly supported by six participants. CDRayRev 683

was reported to be “most natural” (P2), “matched my expecta- 684

tion” (P6), and “intuitive” (P4). Since CD gain is intended to 685

reduce pointer movement relative to user input, the converg- 686

ing behavior of CDRayRev may have affected participants’ 687

perception of the technique as intuitive. 688

Although CDHandPos received high accuracy ratings es- 689

pecially in the Far condition of the placement task, it was 690

not preferred in general. Some participants highlighted this 691

contrast: “it had the highest precision, but required the most 692

arm movement” (P1), even though the pointing resolutions of 693

three tools at the presented depth were considerably similar. 694

This disparity suggests that while users may have recognized 695

the functional effectiveness, aspects such as comfort or mental 696

load may have negatively influenced their preference. Many 697

participants perceived CDHandPos was “too heavy” (P15), 698

“much slower than my actual hand motion” (P3), and “wasn’t 699

really following my arm” (P1). The disconnection between the 700

ray and the hand may have significantly affected participants’ 701

perception of control. 702

CDRayRev proved to be the most effective technique 703

for high-precision tasks, offering strong perceived accuracy, 704

preference, and stability. Despite its departure from conven- 705

tional raycasting, its converging behavior contributed to a 706

strong sense of intuitiveness. CDRayDir was better suited 707

for moderate-precision tasks where speed and ease of control 708

were prioritized. In contrast, CDHandPos revealed a trade-off 709

between perceived accuracy and user comfort, caused by a 710

disconnect between hand motion and pointer response. These 711

findings emphasize the importance of aligning interaction 712

techniques to task demands. Overall, CDRayRev appears most 713

appropriate for fine manipulation, while CDRayDir may be 714

beneficial for general-purpose contexts. 715

3) Limitations & Future Works: Although ForceCtrl 716

demonstrated clear benefits in both objective performance and 717

subjective responses, there remains room for refinement. In 718

our implementation, higher force levels (e.g., “3:Moderate” 719

and “7:Very Strong”) were chosen to ensure stable sensing, but 720

repeatedly exerting strong force may be physically demanding. 721

While users would likely activate high-precision states less 722
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frequently in practice, increasing force detection sensitivity723

could improve responsiveness and user experience. Likewise,724

enhancing force classification accuracy and speed would help725

reduce latency in state transitions. Although this study focused726

on experienced hand-raycasting users, the system is scalable to727

broader populations due to its controller-free design, familiar728

gestures, and minimal cognitive effort. In addition, we focused729

on user-defined force input rather than gesture recognition, but730

the wristband’s potential for out-of-sight interaction could be731

further explored in future work.732

While we adopted a discrete state approach to balance733

usability and interaction clarity, future work may explore734

hybrid strategies that combine continuous control of CD gain735

with discrete state transitions. Such an approach could offer736

finer-grained precision while preserving distinct interaction737

phases, potentially enhancing user performance in complex738

spatial tasks. Incorporating real-time visualization of force739

classification could also assist users in maintaining more con-740

sistent control. A proper visual feedback will reduce cognitive741

effort [68] and improve performance especially during high-742

precision tasks. Finally, exploring use cases could further743

demonstrate the system’s practical utility. We anticipate our744

system to support high-precision tasks in dense 3D environ-745

ments, such as those found in advanced AR/VR applications.746

VII. CONCLUSION747

We introduced ForceCtrl, a novel 3D hand raycasting tech-748

nique that enables users to control pointing precision through749

user-defined pinch force. By applying CD gain directly to750

the ray, the system offers a target-agnostic, bare-hand method751

for refining pointing accuracy. Our evaluation demonstrated752

that ForceCtrl significantly improves pointing performance,753

particularly for small and distant targets. We also proposed and754

compared three CD gain strategies, highlighting the benefits755

of ray convergence in high-difficulty tasks. These findings756

underscore the potential of personalized, force-based input as757

a scalable and effective modality for precise 3D interaction.758

Future work may explore more stable sensing, broader task759

generalization, and integration with multimodal feedback to760

further expand the utility of ForceCtrl. We believe this research761

contributes to advancing 3D interface design for professional762

and immersive contexts that involve complex visual data and763

demand high pointing precision.764
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