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ForceCtrl: Hand-Raycasting with User-Defined
Pinch Force for Control-Display Gain Application

Seo Young Oh, Junghoon Seo, Juyoung Lee, Boram Yoon, Sang Ho Yoon, and Woontack Woo

Abstract—We present ForceCtrl, a novel 3D hand raycasting
technique that enhances pointing precision based on control-
display (CD) gain controlled with user-defined pinch force. We
introduce a target-agnostic approach for refining raycasting
precision, overcoming limitations in human motor accuracy.
User-defined pinch force, detected with surface electromyogra-
phy (SEMG), enables users to easily activate or deactivate CD
gain during interaction. We propose three CD gain strategies
and compare them through target selection and placement tasks.
Our system reduces selection errors, placement jitters, and
user workload, especially for distant targets in high-difficulty
tasks. These results highlight the effectiveness of applying CD
gain to hand raycasting and demonstrate the potential of user-
defined pinch force as a robust input modality for precise hand
interaction in AR/VR.

Index Terms—Hand Interaction, Force-based Interaction, Vir-
tual and Augmented Realities, Input Accuracy, Raycasting

I. INTRODUCTION

ECENT advances in graphics and display technologies in
Augmented Reality (AR) and Virtual Reality (VR) have
enabled the visualization of complex 3D environments, often
populated with small and densely packed targets. As users
increasingly interact with such complicated spatial data, the
need for accurate and robust pointing techniques becomes crit-
ical for both productivity and user experience. While previous
approaches have attempted to reduce interaction complexity
by controlling the density or layout of 3D content [1], [2],
this strategy is unsuitable in professional domains such as
computer-aided design or data visualization, where arbitrary
rearrangement hinders interpretation and workflow efficiency.
Raycasting is one of the most widely adopted pointing
techniques in AR/VR, particularly effective for selecting out-
of-reach targets [3]. Among its variants, hand raycasting is
especially valuable in scenarios where seamless transitions
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between physical and virtual interactions are needed, as it
does not rely on a handheld device. However, raycasting is
greatly affected by human motor abilities [4] and tracking
quality [5], [6], making it less suitable for high-precision tasks.
To improve interaction with complex 3D environments, we
focus on two key challenges: 1) enhancing raycasting precision
and 2) enabling precision control without handheld devices.

Several techniques have been proposed to improve ray-
based selection, such as object rating systems [7], [8] and
pointing prediction models [9]-[11]. While effective in spe-
cific contexts, these methods often depend on specific tar-
gets or remain limited by human motor accuracy, reducing
their generalizability. To address these issues, we introduce
a target-agnostic pointing refinement method by applying
control-display (CD) gain to the ray itself, reducing sensitivity
to fine motor noise. Drawing from the concept of CD ratio
in previous 2D and 3D interaction techniques, we define and
compare three strategies for applying CD gain to raycasting.

Although bare-hand interaction offers significant advantages
over device-based interactions as it preserves natural hand
movement, it faces challenges due to limited input modalities.
While gaze-based input is often paired with hand interac-
tion [12], [13], it is less effective for rapid mode switching and
small targets [14], [15]. To augment hand raycasting without
introducing physical constraints, we leverage a familiar selec-
tion trigger such as a pinch gesture and measure its intensity
using surface electromyography (SEMG). Unlike prior force-
based systems that rely on fixed force thresholds [16], [17],
our approach utilizes user-defined force levels based on a
subjective scale [18], allowing force-based input that accounts
for individual differences in force exertion and perception.

We present ForceCtrl, a novel 3D input technique that en-
ables users to control the CD ratio of hand raycasting through
user-defined pinch force. Our goal is to enhance the scalability
of hand raycasting to better support the growing diversity
of tasks in AR/VR environments. By leveraging pinch force,
ForceCtrl provides unobtrusive control of the CD ratio, without
requiring disruptive gestures or interrupting ongoing pointing
tasks. In the following sections, we introduce user-defined
pinch force as a robust input modality for interaction state
control (Fig. 1(a)), and propose three CD gain strategies to
refine ray precision (Fig. 1(b)). We demonstrate that ForceCtrl
improves the pointing performance in high-precision tasks, and
reveal the benefits of ray convergence and the drawbacks of
visual discontinuity across different CD gain strategies. These
findings contribute to advancing 3D interaction techniques for
complex AR/VR environments and encouraging its adoption
in professional and high-precision use cases.
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(a) - (b)
No force Strong force 1
5 | - 2
AA Asls CDHandPos
Normal Pinch: As-Is Force Pinch: Precise Mode CDRayDir CDRayRev
( Standard raycasting Proposed, activated by user-defined pinch force Baseline Baseline (Ref) Modified )

Fig. 1. Overview of ForceCtrl. (a) Users control pointing precision via pinch force detected by an SEMG armband. The ray behaves normally without force
and shifts for increased precision when force is applied. (b) We propose and compare three CD gain strategies activated by force: CDHandPos scales hand
movement; CDRayDir scales directional change; and CDRayRev applies the scaled directional change in reverse. The strategies are detailed in Section III.C.

II. RELATED WORKS
A. Precise Ray Pointing

As one of the most common 3D interaction methods, ray-
casting allows users to point and select out-of-reach targets [3].
However, the raycasting method is highly dependent on human
motor ability [4], [19], and sensitive to even small move-
ments [20], [21]. Also, ironically, raycasting becomes less
accurate at greater distances [22]. Various assistive techniques
have been proposed, including expanding selection volume [1],
[23], [24], hierarchical disambiguation [25]-[28], and object
rating systems [4], [7], [8]. While these methods reduce
user’s burden of accurate pointing, their reliance on specific
targets limits their applicability to other tasks, such as target
placement. Although computational models can predict the
ray’s landing pose [9]-[11], pointing resolution is still confined
by human motor limitations.

Applying a CD gain to a pointing method can mitigate the
limitations of human motor ability [19], [29]. While CD gain
has been used in direct 3D interaction for target selection [2],
[30], placement [22], [31], and manipulation [32], its appli-
cation in distant 3D interaction remains underexplored. Dual-
precision pointing [33], or hybrid pointing [34], [35], improves
distal pointing accuracy by separating ballistic and corrective
phases. However, most mid-air dual-precision techniques are
limited to pointers projected on surfaces [36]-[38]. Prior CD
gain applications for raycasting have focused on handheld
devices [39], [40]. We aim to define a CD ratio for hand
raycasting, which differs from handheld raycasting in terms
of ray origin and extrapolation.

B. Hand Interactions

Mid-air hand interaction enables natural and expressive
interaction for various tasks such as object retrieval [41]—-[43]
and mode switching [44], [45], without the need for external
devices. It is especially well suited for AR, where seamless
transitions between virtual and physical contexts are important.
Hand raycasting, in particular, has demonstrated performance
comparable to handheld controllers given high-quality hand
tracking [6], [46]. Although gaze-based interaction presents

a hands-free alternative, its high variability [47], inherent
Midas touch problem [48], and limited accuracy for small
targets [14], [15] make hand interaction a more reliable choice.

Pinch gestures [20] have been widely studied for their
intuitive nature and innate tactile feedback. Often employed
as a selection trigger in hand [28], [49], [50] or gaze raycast-
ing [13], [46], [50]-[52], pinch offers fast [53] and temporally
precise input [54]. It has also been used for depth control [55],
clutching [14], [56], and 3D interaction tasks such as grasp-
ing [57], pivoting [58], and bimanual manipulation [12], [59],
[60]. However, limiting pinch to binary triggers underutilizes
its potential. Recent studies have explored richer input through
semi-pinch state [2], [13] or continuous pinch scaling [61].
Building on this, we integrate multiple levels of pinch force,
leveraging its natural tactile feedback.

C. Force-based Interactions

Force-based interactions have been widely studied in 2D
contexts, particularly in mobile [62] and tabletop settings [63].
These studies have introduced force to enable additional
actions [17], [64] or adjust input parameters [16], [65]. In
particular, studies that used force or pressure to control input
precision [66], [67] suggest its potential to enhance pointing
accuracy. In contrast, force-based interactions in 3D has re-
ceived limited attention. It has mainly focused on mimicking
real-world physics [68], [69] and has not been extensively
explored as a novel input modality.

The forearm-worn SEMG has long been investigated for
hand interactions [70]-[72] due to its non-invasive nature [73].
Although numerous models for SEMG-based finger or pinch
force estimation have been proposed, few consider users
subjectivity and individual differences. Most models employ
direct force regression [69], [74], [75], yielding objective
values. Similarly, force level classification typically defines
levels based on ground truth force [76] or Maximum Voluntary
Contraction (MVC) [77], [78]. Instead, our model classifies
user-defined force levels to account for user variability in
physical ability and perception.
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III. FORCE CLASSIFICATION MODEL

The force classification model forms the foundation of
our system, enabling reliable recognition of multiple levels
of pinch force to provide explicit control over interaction
parameters. The model classifies user-defined pinch force
leveraging forearm EMG signals, accommodating individual
differences in muscle strength and perception. This section
first describes a preliminary study to determine feasible force
levels for interaction, followed by the design and evaluation
of machine learning models for force classification.

A. Preliminary Study on User-Defined Pinch Force

Our aim is to employ subjectively determined pinch force
as a robust input, addressing individual differences in muscle
ability and perception. We first validated whether users can
distinguish multiple levels of pinching force under a sub-
jective scale. From previously observed correlation between
the perceived force intensity and objective measures in hand
activities [79], [80], we assumed that the correlation would
hold the same for the pinch force exertion.

We recruited 12 participants (7 male, 5 female, ages 22—
32, M =28.5,8SD = 3.37) with the institutional review board’s
approval. The participants were equipped with a force sen-
sor (CS8-100N, Singletact) on the thumb. The Borg Category
Ratio Scale 10 (Borg Scale) [18], which comprises numbers
from O to 10, has been commonly used to quantify perceived
force intensity by assessing muscle fatigue. We measured
four in-between force intensities that are noted with verbal
anchors, “2:Weak”, “3:Moderate”, “5:Strong”, and ‘““7:Very
Strong”, as verbal anchors are the key factor of the scale
for quantizing user’s experience. We excluded the extremities
from the scale, as such force levels are either impractical
for repeated execution or less suitable for stable sensing in
interaction. We collected 4 trials for each level in a balanced
order, obtaining 16 measurements in total. We also captured
the MVC of each participant for analysis.

We found a cross-user linear relationship between Borg
Scale and %MVC with a regression coefficient of 9.72 (r> =
.83,F(1,238) = 1189, p < .001). %MVC value was calculated
by dividing the measured force by the MVC of the participant
in Newtons. The results suggest a common pinch force ex-
ertion behavior among participants under the Borg Scale. We
also performed a within-participant linear regression, where
the regression coefficient ranged in 9.72+0.97 (> = 0.88 +
0.05). We confirmed users can consistently exert the same
pinch force at a given Borg Scale level.

It was also suggested that force levels should be at least
three Borg Scale units away from each other to ensure discerni-
bility. For each participant, we compared the four force levels
in %MVC. If the measured force intensities of two paired force
levels did not make a significant difference, we assumed that
the participant did not clearly distinguish the two levels. The
result showed that there were 7 participants who were unable
to make a significant difference for the “2:Weak” & “3:Moder-
ate” pair, two participants for the “3:Moderate” & “5:Strong”
pair, and another two participants for the “5:Strong” & “7:Very
Strong” pair. Accordingly, also considering the stability of

3
_ collected data FSR cross-user 0: None
T 1 r LL
MO eweer. 8338 RN
B = inter-session 3: Moderate

DI N

W
7

intra-session 7:Very Strong
o LI GS

Fig. 2. Force classifier training. (a) Data collection setup and procedure,
(b) collected data, (c) training conditions, and (d) classification output.

SEMG signal, we selected “3:Moderate” & ““7:Very Strong”
pair as the input to our system.

B. Classification of User-Defined Pinch Force

We explored multiple machine learning models to clas-
sify the Borg Scale ratings using forearm EMG signals. We
recorded forearm EMG signals using an armband with 8 elec-
trodes!. It should be noted beforehand that our methodologies
and findings are not confined to a specific device, and could
potentially be extended to alternative EMG-based devices.
Data were collected from 12 participants (6 male, 6 female,
ages 22-37, M = 28,SD = 4.92), at three Borg Scale lev-
els (“0:None”, “3:Moderate”, “7:Very Strong”) across four ses-
sions per participant later excluding the first session (Fig. 2(a)).
Each trial involved a 4-second pinch and we analyzed the
middle 2 seconds (Fig. 2(b)) yielding 10.8 minutes of data.

We evaluated five distinct models for force classifica-
tion: logistic regression, a 3-layer neural network, SVM,
XGBoost [81], and CNN [69]. We performed tests under
three conditions (Fig. 2(c)): cross-user (generalization across
users), inter-session (consistency over sessions), and intra-
session (performance with session-specific calibration). Par-
ticipants were split into four groups for cross-user testing, one
group for testing and the rest for training, resulting in a 4-
fold split. In the inter-session condition, one of three sessions
per user was set as test data, forming 36 training-test pairs.
For intra-session testing, one of three trials per session was
used for testing, creating 108 pairs. The classifier was trained
to recognize the three force levels: “0:None”, “3:Moderate”,
“T:Very Strong” (Fig. 2(d)).

In the cross-user condition, the model accuracy ranged from
35.99% to 79.12% with CNN performing best but impractical.
In inter-session tests, CNN outperformed logistic regression
but showed no significant advantage over SVM and XG-
Boost in paired t-tests. Pre-training and temporal aggregation
improved CNN’s median accuracy to 93.35% though still
insufficient. In intra-session tests, CNN significantly outper-
formed all models and reached 99.65% accuracy with pre-
training and temporal aggregation. Due to its high intra-session
performance, we adopted CNN in our system (Fig. 3(a)).

To address the reliability issues of EMG-based systems from
motion noise and equipment problems [73], we added a history
accumulator. Our system updates the force level only when

Thalmic Labs Myo armband: https:/github.com/thalmiclabs
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(a) Force Classifier
Armband ‘ 0-None (b) (c)
g'yOdgzate Force Final
EMG Signal ~verystiong Prediction Force Force Level
SEMG Sensor I > » Interaction
8 channels RawEMG  EMG NN Classification Accumulator (0/3/7)
Signals Spectrogram Output State Machine
A AR/VR Headset

Raw Final Dominant

IMU Acceleration | Trapezoidal Hand Status |  Motion Hand Status Articulated Hand Pose |

3 channels | Integration "| Accumulator | ( static / Moving ) Hand Tracker [ [(open/Pinch) |

Fig. 3. System architecture of ForceCtrl. (a) A pre-trained CNN processes 8-channel SEMG data and classifies it into three force levels. (b) The output is
post-processed with motion data using a history accumulator. (c) The final classification, combined with hand pose, determines the interaction state.

the history accumulator is filled with the same class for 60
frames, for both responsiveness and stability (Fig. 3(b)). We
also integrated IMU signals, assuming users would not change
pinch force during rapid hand movements. When hand velocity
exceeds the threshold, the history accumulator does not update.
If the output of the force history accumulator is consistent
over 50 ms, we combine it with the hand pose tracked by the
headset and alter the system’s interaction state (Fig. 3(c)). The
interaction state remains unchanged for 0.6 s after a change
to ensure stability. By combining EMG and IMU data with
temporal aggregation, our system improves force classification
reliability.

IV. FORCECTRL SYSTEM

ForceCtrl is designed to improve the accuracy of hand
raycasting in a target-agnostic manner, supporting both precise
selection and placement. Built on the force classification
model, it enables explicit control of pointing precision: the
ray becomes more precise as pinching force increases. The
system allows seamless alteration of pointing precision without
disrupting users’ workflow.

A. Interaction States

Without any force exertion detected by the force classifica-
tion model, the system operates as usual, in the same way as
the standard hand raycasting. When the index finger is open,
the pointer is in the coarse pointing state (Fig. 4(a)). When a
pinch gesture is recognized, the pointer turns into the coarse
dragging state, considered to be clicked (Fig. 4(b)).

‘(@) _Coarse Pointing

Sle “n

(b) Coarse Dragging

! o 0: None
G N &

| OAR

AR Normal Pinch: As-Is

When users require grater pointing accuracy, they can acti-
vate the precise states by applying the pinching force. A force
of “3:Moderate” triggers the precise pointing state (Fig. 4(c)).
In this state, the pointer’s movement is damped, as detailed
later in this section, enabling more sensitive control with
the same hand movement. This mapping, where a stronger
pinch results in smaller ray movement, may feel intuitive as
it resembles the metaphor of drag force.

Then, the force of “7:Very Strong” triggers the precise
dragging state (Fig. 4(d)). Pointer movement is also damped
in this state. With increased pinching force, users can either
select an object with a brief click or grab it by maintaining
the force. Although the exertion of “7:Very Strong” can be
physically demanding, this state is expected to be held only
briefly in typical use.

B. State Transitions

Pinch can activate three different states: coarse dragging,
precise pointing, and precise dragging. Upon detecting a pinch
gesture, the system awaits the next output from the classifica-
tion model. If the classified force level is “O:None”, coarse
dragging state is activated. A force level of “3:Moderate”
triggers the precise pointing state. No transition occurs when
the force is classified as “7:Very Strong” at the moment of
pinch. Notably, the states are not sequential; although the user
naturally transition through the intermediate levels, the 50 ms
window systematically allows direct activation of the states.

The precise dragging state is only accessible when the
pointer is already in either the coarse dragging or precise

3: Moderate !

@& €]

N
\
i w

Precise Dragging (d)’
7: Very Strong '

Force Pinch: Precise Pointing - - - - - - -

Fig. 4. Interaction state transitions. (a) Coarse pointing, (b) coarse dragging, (c) precise pointing, and (d) precise dragging. Upon a pinch, the system waits
for the next force classification and transitions to either coarse dragging or precise pointing. Precise dragging is only reachable from these two. Releasing the

pinch returns the system to coarse pointing.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on February 05,2026 at 10:23:07 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3647547

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Ray Transformation

7z v

(a) CDHandPos

o
o
o

Output Ray
[ ]

(b) CDRayDir (c) CDRayRev

CD Gain-Applied Factor Resulting Ray

Fig. 5. Three ray shifting strategies. (a) CDHandPos, (b) CDRayDir,
(c) CDRayRev. Top row: the ray transformation process to apply CD gain;
bottom row: the resulting output ray. P is the hand’s position, P’ is the CD
gain-applied position. ¥ is the vector of the pointing ray, ¥ is the CD gain-
applied vector. O and O’ are the origins of the pointing ray.

pointing state. This transition logic assumes that users are
unlikely to change both precision and selection state simulta-
neously. The system allows returning from precise dragging to
precise pointing, enabling actions such as consecutive clicks.
However, transitioning directly from precise dragging to coarse
dragging is not permitted, as we assume users would not
attempt to “reset” the pointer mid-drag. Users can always exit
to the coarse pointing state by releasing the pinch.

C. Ray Shifting

While the CD ratio is well defined in 2D pointing, the
concept becomes less clear in 3D ray-based pointing, where
the ray extends infinitely and lacks a fixed endpoint. To address
this, we propose three approaches, each applied to a different
component of the ray. To ensure broader applicability, all
approaches are designed to be target-agnostic, making them
suitable for both target selection and placement tasks. We im-
plemented the system using discrete force-based states rather
than a continuous force-to-gain mapping to support multiple
interaction modes and ensure robust interaction. Discrete states
allow four functionally distinct phases, whereas continuous
scaling would permit only two: pinching and not pinching.
Prior work also showed that implicit transition results in sig-
nificantly lower performance and preference for small targets
than using a discrete mode switch [36].

CDHandPos. A straightforward approach is to treat the
real hand as the control input and the virtual hand as the
display output [2], applying the CD gain to the real hand’s
translation to determine the virtual hand’s position (Fig. 5(a)).
Specifically, the 3D displacement of the hand is scaled by the
CD gain and added to the virtual hand’s previous position:
Prext = Phrey + (Paext — Pprev) % gcp- Likewise, the change in
ray direction is scaled and added to the previous ray direction:
Viext = Vprev T (Vnext — Vprev) X gcp- This effectively extrapolates
the ray through the modified hand position. Note that the
virtual hand is a conceptual construct and is not rendered to
the user. Although simple, this method can cause the ray to

visually detach from the user’s hand, potentially leading to
dissonance in the user experience.

CDRayDir. Inspired by prior work that damped rotational
changes in handheld raycasting [39], [40], this second ap-
proach scales the directional change of the ray (Fig. 5(b)). In
this method, the hand position remains unchanged, while the
change in ray direction is scaled by the CD gain and applied
to the previous direction: V., = V), + (Viewr — Vprev) X gD
This maintains visual continuity between the ray and the hand,
reducing the disconnection introduced in the previous method.
In terms of the CD ratio, the control input is the change in ray
direction, and the display output is the adjusted ray direction.
However, as the ray continues to diverge, pointing resolution
still decreases with distance, though to a lesser extent.

CDRayRev. To address not only human motor limitations
but also pointing resolution at a distance, we developed a third
approach (Fig. 5(c)). Consider a hypothetical target: consistent
with the purpose of the CD gain, its movement should follow
the user’s hand with reduced displacement [22], [31]. To
achieve this in a target-agnostic manner, we counteract hand
movement by reversing and scaling the directional change of
the ray: Vo = Vyrep — (Viewr — Vprev) X gep. This causes the
ray to gradually converge, reducing the apparent motion of a
distant point along the ray. Although the CD gain is applied
to the ray direction, this control-display relationship can be
interpreted as hand translation (control) resulting in scaled
movement of an imaginary target along the ray (display). This
results in higher precision as the pointing distance increases.

D. Implementation of CD Gain

We determined different CD gains for each of the three
proposed methods. Previous studies have shown that appro-
priate CD gain values for pointing techniques can be derived
from the device characteristics and human factors [29], [33].
Following these frameworks, we calculated CD gains that do
not trigger clutching or precision issues.

Device characteristics were based on the technical specifica-
tions of the Meta Quest 32, used in our implementation, while
human factors were drawn from the literature [82], [83]. We
assumed optimal performance of vision-based hand tracking,
such that input resolution is limited solely by human motor
ability. Additionally, the input device’s operating range was
assumed to match its field of view (FoV), since visual feedback
is lost beyond it regardless of tracking.

CD gains were configured to produce an angular resolution
between 0.34° to 0.43° at a distance of 2 m with a hand
movement of 1.5°. This allows the smallest hand motion
to reliably target objects as small as 1° at 2 m, which is
considerably small yet clearly visible. The CD gain values for
CDHandPos, CDRayDir, and CDRayRev were 0.29, 0.038,
and 0.025.

V. USER EXPERIMENT

We aimed to evaluate the impact of the ForceCtrl system
and the three CD-gain-based pointing strategies. To reflect

2Meta Quest 3:https://www.meta.com/kr/en/quest/quest-3
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real-world AR/VR use cases, we adopted object positioning
task [84], following prior work [2], [22]. The task was divided
into two parts—a selection task and a placement task—to
enable separate analysis of objective performance measures.

The proposed pointing methods were implemented based on
the raycasting capabilities of the Meta XR Interactions SDK?.
The baseline condition (Baseline) used the SDK’s default
raycasting. Surface EMG data were collected using a Thalmic
Labs Myo armband. The interaction system was built on Unity
2021.3.22f1* running on Windows 11. All data collection was
conducted on a PC equipped with an Nvidia GeForce RTX
3090 GPU and an Intel Core i7-11700K CPU, with a Meta
Quest 3 connected via Meta Quest Air Link.

A. Experiment Design

We recruited 16 participants (8 male, 8 female, 22-33,
M = 27.6,SD = 3.6, all right-handed) through the institute’s
online community board. All participants self-identified as
intermediate to expert users of hand raycasting in AR/VR:
7 reported moderate experience, 7 used it extensively, and 2
used it daily. The experiment was approved by the institutional
review board and all participants provided their informed
consent. Participants received $20 for 2 hours of participation.

In the selection task, participants were asked to select a des-
ignated target from a group of small, identical spheres. Each
trial presented one target and 48 obstacle spheres distributed
within a 20 cm cube. The target was colored yellow (Fig. 6(a))
and turned blue upon selection (Fig. 6(b)). When pointed
at, spheres were highlighted in cyan. The trial began when
participants selected a “start” sphere and ended when they
released the pinch after correct selection.

The placement task required precisely aligning a spherical
target within a cubic goal sized to enclose the sphere. The
target-goal pair appeared at an eccentricity of 10° in the
FoV, with the target on the non-dominant hand side and
the goal on the opposite side. A semi-transparent reference
sphere was displayed inside the cube to assist with accurate
placement (Fig. 6(c)). The target was highlighted in green
upon contact with the goal (Fig. 6(d)). Task completion time
was measured from the first collision with the goal, capturing
only the fine-tuning phase. The trial ended upon release if the
target was in contact with the goal.

Both tasks were conducted using a within-subject design
with four Technique conditions and two Depth conditions.
In the Close condition, targets were placed at a distance of
1.0 m, beyond arm’s reach. In the Far condition, depths were
set to 2.0 m for the selection task and 1.5 m for the placement
task, since the latter required higher visual acuity due to its
finer spatial demands. To minimize visual confounding, all
targets were set to 35 mm in diameter, corresponding to 1° of
visual angle at 2 m. While no formal standard exists for the

3Meta XR Interactions SDK: https://developer.oculus.com/downloads/
package/meta- xr-interaction-sdk/

4Unity 2021.3.22f1: https:/unity.com/kr/releases/editor/whats-new/2021.3.
21

[=)}

~©® selection
target

(b-1) ®

target

placement
goal

Fig. 6. Experimental tasks. Selection task: (a-1) participants select the
yellow target; cyan indicates pointing, (a-2) blue indicates correct selection.
Placement task: (b-1) participants place a target into a cube; (b-2) green
indicates successful placement. The colored ray denotes precise states; and
thicker ray indicates dragging states.

minimum interactable size of virtual objects, we followed the
recommended size of UI buttons in AR to ensure visibility.

We tested four interaction techniques, using standard hand
raycasting as the baseline and comparing it with the three pro-
posed methods. With the Baseline, no force-triggered actions
were available, and only coarse states were used. We altered
line width and color to visualize precision and selection state,
with each proposed technique shown in a distinct color (red,
green, or blue) during precise states. For experimental control,
irrelevant interaction states were deactivated in each task.

In addition to task completion time, we recorded selection
errors in the selection task—counting incorrect selections on
obstacles or in empty space—and final offset in the place-
ment task. Subjective responses were collected through post-
condition questionnaires. Perceived workload was assessed
using the NASA Task Load Index (NASA-TLX) [85], with
scores ranging from O to 100. Participants also responded
to two 7-point Likert scale items assessing perceived task
performance (Q1: “I successfully executed the task.”; Q2: “I
successfully controlled the pointer.”’). In the post-session ques-
tionnaire, participants indicated their most and least preferred
techniques, as well as the techniques they perceived as most
and least accurate.

The experiment included a total of 240 trials per partici-
pant. Each task was performed under two Depth conditions,
presented in order of distance as the Far condition was more
demanding. Four Technique conditions were counterbalanced
across participants. For each Depth x Technique combination,
participants completed three sets of five trials, with the first
set treated as practice and excluded from analysis. Trials were
timed out after 20 seconds, and participants rested at least 15
seconds between sets to reduce fatigue. Before the main tasks,
participants briefly calibrated the system by exerting each
of three force levels—“0:None”, “3:Moderate”, and *“7:Very
Strong”—once, based on the Borg Scale. A short verification
stage followed in which participants tested a series of force
levels. After being introduced to the system, they practiced all

SButtons—Mixed Reality:
mixed-reality/design/button

https://learn.microsoft.com/windows/
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Task Completion Time (s) Selection Errors (N)
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10 10 100 7

= = o o= 6 L1 L L]
8 8 - 80 ° g

5 o] l
6 6 60 A I
4 4 i! 40 !Hl_ s
2 2 ll! 20 2
0 Close Far 0 Close 0 Far ! Close Far ! Close Far
(@) (b) (c) (d) (e)
Significance levels: (¥ p<.05 **p<.01 **+p<.001 *++xp<.0001) [ Baseline [ CDHandPos [ CDRayDir [0 CDRayRev

Fig. 7. Selection task results. (a) Task completion time, (b) number of selection errors, (¢) Raw-TLX, (d) perceived execution, (e) perceived control.
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Fig. 8. Placement task results. Top row: objective results. (a) Task completion time, (b) final offset between target and goal, (c) jitter standard deviation,
(d) jitter along X-axis, (e) jitter along Y-axis. Bottom row: subjective results. (f) Raw-TLX, (g) performance subscale, (h) frustration subscale, (i) perceived

execution, (j) perceived control.

four interaction states. During the experiment, participants re-
sponded to the NASA-TLX and a post-condition questionnaire
every 15 trials. After the selection task, participants completed
a post-session questionnaire. The same procedure was repeated
for the placement task.

B. Quantitative Results

For objective measures, we used a two-way repeated
measures ANOVA (a = .05) after verifying normality with
the Shapiro-Wilk test and sphericity with the Mauchly’s
test. When assumptions were violated, we applied a two-
way repeated measures ANOVA using Aligned Rank Trans-
form (ART) [86] for non-parametric factorial analysis. All
post-hoc pairwise comparisons were corrected using the
Benjamini-Hochberg procedure. Subjective measures were
analyzed using ART as well. Participants with an extreme
number of timed-out trials or selection errors were excluded
from the analysis.

1) Selection task: Technique had a significant main effect
on task completion time (F(3,33) = 23.898,p < .001,11,% =
.685). All ForceCtrl techniques increased completion time
compared to the Baseline (all p < .001; Fig. 7(a)). Tech-
nique also significantly affected the number of selection
errors (F(3,33) =9.715,p < .001,111% = .469), with Baseline
resulting in more frequent incorrect selections than all three
ForceCtrl techniques (all p < .001; Fig. 7(b)). No significant
differences were observed in subjective workload among tech-
niques (Fig. 7(c)—(e)).

2) Placement task: Technique had a significant effect on
task completion time (F(3,33) = 3.370, p = .030, T]Iz, =.233),
with CDHandPos requiring more time than Baseline (p = .023;
Fig. 8(a)). For placement accuracy, measured as the offset
between the target and goal, only Depth showed a significant
main effect (F(1,11) = 17.674, p = .001,1? = .616; Fig. 8(b)).

We additionally analyzed the target’s jitter during the
alignment using the standard deviation of the target’s
position. Although only Depth had a significant effect
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Fig. 9. Qualitative ratings. (a) Positive and (b) negative ratings in the selection task, and (c) positive and (d) negative ratings in the placement task.

on overall jitter (F(1,11) = 18.965,p = .001,11; = .633;
Fig. 8(c)), Technique significantly affected jitter along the
X-axis (F(3,33) =8.694,p < .001,11[% = .441; Fig. 8(d)) and
Y-axis (F(3,33) = 10.823,p < .OOl,n; = .496; Fig. 8(e)).
Baseline resulted in greater fluctuations than CDHandPos (p <
.001), CDRayDir (p < .001), and CDRayRev (p = .001)
on the X-axis, all three techniques (all p < .001) in Y-
axis. Depth also significantly increased jitter along X-
axis (F(1,11) = 70.515,p < .001,1; = .865) and Y-axis
(F(1,11)=112.773,p < .0017111% =.911).

For subjective measures in the placement task, Technique
had a significant effect on Raw-TLX scores (F(3,33) =
3.814,p= .019,715 =.257), with CDHandPos (p = .034) and
CDRayRev (p = .022) reducing perceived workload com-
pared to Baseline (Fig. 8(f)). Technique also affected the
NASA-TLX performance subscale (F(3,33) = 16.701,p <
.001,11]% = .603) and frustration subscale (F(3,33) =
5977,p = .002,7]]% = .352). All ForceCtrl techniques were
rated as significantly better in performance than Baseline (all
p < .001; Fig. 8(g)). Baseline resulted higher frustration
than CDHandPos (p = .005), CDRayDir (p = .011), and
CDRayRev (p = .004). In terms of Depth, frustration was
significantly higher in the Far condition compared to the Close
condition(F(1,11) = 6.204, p = .030, TI,% =.361; Fig. 8(h)).

Perceived task execution, measured on a 7-point
Likert scale, was significantly affected by both
Technique (F(3,33) = 12.587,p < .001,11[% = .534) and
Depth (F(1,11) =14.533,p = .003,17,% =.569). Participants
rated their execution with Baseline significantly lower than
with all three ForceCtrl techniques (all p < .001). Execution
ratings also declined in the Far condition compared to Close.
Additionally, a significant interaction between Technique and
Depth was observed (F(3,33) =3.704,p = .021,11]% =.252).

C. Qualitative Feedback

1) Selection task: Participants most frequently rated
CDRayDir as the most accurate technique in both
Close (58.3%) and Far (50.0%) conditions, followed by
CDRayRev in Close condition (33.3%) and CDHandPos in
Far condition (25.0%). Regarding preference, CDRayDir was
also the most preferred technique in both Close (50.0%)
and Far (33.3%) conditions (Fig. 9(a)). For the Ileast
accurate ratings, CDHandPos was most frequently selected
in the Close condition (33.3%), while Baseline received
the highest proportion in the Far condition (50.0%).
CDHandPos was again selected most often as least preferred
technique (41.7% in both depth conditions), followed by
CDRayRev in Close condition (25.0%) and Baseline in Far
condition (33.3%) (Fig. 9(b)).

2) Placement task: CDRayRev was rated as the most accu-
rate technique in Close (41.7%) condition, while CDHandPos
was most often selected in Far condition (41.7%) followed
by CDRayRev (33.3%). In terms of preference, CDRayRev
was selected most frequently in both Close (50.0%) and
Far (41.7%) conditions (Fig. 9(c)). For least accurate, Base-
line was most frequently chosen in both Close (83.3%) and
Far (100.0%) conditions. CDRayDir was selected as the
least accurate in Close condition (16.7%), and the remaining
techniques received no votes in either condition. For least
preferred, Baseline was selected by the majority of participants
in both Close (83.3%) and Far (66.7%) conditions (Fig. 9(d)).

VI. DISCUSSION

The experimental results demonstrate that ForceCtrl enables
users to stabilize the pointer for precise interaction with small
and distant targets, while maintaining a comparable level
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Perceived execution decreased with depth when of perceived workload. Although the ForceCtrl techniques so7
using the Baseline technique (p = .006; Fig. 8()). resulted in slower task completion times, this was expected, as s
Technique also significantly affected perceived the technique inherently involves an additional step for adjust-  se
control  (F(3,33) = 12.139,p < .00I, 77[2, = .525), ing the pointer. Importantly, the ForceCtrl techniques reduced 00
with participants reporting better control with three frustration and perceived performance difficulty, particularly in  eo1

ForceCtrl techniques than with Baseline (all p < .001).
A significant interaction between Technique and
Depth (F(3,33) = 3.245,p = .034,111% = .228) indicated
that perceived control declined with increased depth in the
Baseline condition (p = .036; Fig. 8(j)).

high-precision tasks. Based on these results, we discuss three
key areas in this section: /) the feasibility of using user-defined
force as an input modality, 2) the implications of applying CD
gain to raycasting, and 3) limitations and future directions.
Our goal is to provide a comprehensive interpretation of the
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findings and outline the potential for further development of
precise pointing techniques in 3D environments.

1) User-Defined Force as Input: The results suggest that the
performance benefits from our method outweigh the required
efforts to perform force-based input. As we used the user-
defined values corresponding to “3:Moderate” and “7:Very
Strong” as input levels, we anticipated higher physical load
in compare to the standard raycasting due to additional force
exertion. However, no significant increase in physical demand
was observed in either the Raw TLX or its physical demand
subscale. At the same time, participants reported reduced
frustration and perceived performance difficulty with ForceCtrl
techniques. These findings indicate that when users perceive
substantial benefits—such as improved pointing accuracy in
demanding tasks—they are more willing to accept the physical
effort involved.

Our findings also show that user-defined force can be
generalized across individuals and used as a robust input
approach. All 16 participants were able to successfully control
the system with only a minimal calibration process, requiring
a one-time measurement of three force levels. The system
reliably classified users’ subjective force input, demonstrating
both the robustness of the model and a common pattern in
how users apply force. Moreover, participants were able to
exert force consistently throughout the experiment, without
noticeable fluctuation or decline over time. These results
support the feasibility of user-defined force as a reliable input
method for both the user and the system.

2) CD Gain for Hand Raycasting: While the applica-
tion of CD gain showed clear advantages over the Baseline
technique, among the three proposed methods, CDRayRev
with convergence was most preferred in high-difficulty tasks,
whereas the visual detachment in CDHandPos negatively
impacted user experience. In general, techniques rated highly
in accuracy were also commonly rated as the most preferred.
As task difficulty increased in the Far condition, differences
in perceived performance became more pronounced. Despite
all three proposed techniques requiring the same amount of
force and offering comparable pointing resolution at the tested
depths, participants’ subjective impressions varied consider-
ably between techniques.

Aligned with the quantitative results, the Baseline technique
showed a clear drop in subjective performance as task dif-
ficulty increased. While only 16.67% of participants rated
Baseline as the least accurate in Close condition of the
selection task, 100.00% of participants reported that Baseline
was the least accurate in Far condition of the placement
task. This disparity highlights its unsuitability for spatially
demanding tasks. Participants pointed out that Baseline was
“hard to control in high-difficulty tasks” (P16). Specifically,
many responded that they had to “put both mental and
physical effort to keep my arm steady” and some even “found
myself holding my breath” (P14) and “felt frustration” (P16)
with Baseline technique.

CDRayDir was consistently rated as the most accurate and
preferred technique in the selection task, and reported to be
“intuitive” (P3) and “natural” (P9). However, in the place-
ment task, where higher spatial accuracy is required, both the

perceived accuracy and preference of CDRayDir decreased.
Participants reported that they were “able to control accuracy
without having to move my arm much” (P1), but “had the
lowest precision” (P1) at the same time. This indicates that
CDRayDir has a relatively subtle effect on precision, making
it suitable for moderate-difficulty tasks, but not sufficient for
high-difficulty tasks. Consequently, participants did not prefer
CDRayDir in the placement task reporting that “it didn’t really
feel effective while I still had to apply force” (P15).

In contrast, CDRayRev was rated highest in the placement
task in both perceived accuracy and preference. Four partic-
ipants perceived CDRayRev to be “most accurate” (P2-5),
and P4 reported that “it showed significantly less jitter when
stationary”. As the placement task required finer control, the
convergence of CDRayRev may have helped participants sta-
bilize their movements during precise object alignment. While
this technique deviates most from the standard raycasting,
the technique aligned most closely with participants’ mental
model, explicitly supported by six participants. CDRayRev
was reported to be “most natural” (P2), “matched my expecta-
tion” (P6), and “intuitive” (P4). Since CD gain is intended to
reduce pointer movement relative to user input, the converg-
ing behavior of CDRayRev may have affected participants’
perception of the technique as intuitive.

Although CDHandPos received high accuracy ratings es-
pecially in the Far condition of the placement task, it was
not preferred in general. Some participants highlighted this
contrast: “it had the highest precision, but required the most
arm movement” (P1), even though the pointing resolutions of
three tools at the presented depth were considerably similar.
This disparity suggests that while users may have recognized
the functional effectiveness, aspects such as comfort or mental
load may have negatively influenced their preference. Many
participants perceived CDHandPos was “foo heavy” (P15),
“much slower than my actual hand motion” (P3), and “wasn’t
really following my arm” (P1). The disconnection between the
ray and the hand may have significantly affected participants’
perception of control.

CDRayRev proved to be the most effective technique
for high-precision tasks, offering strong perceived accuracy,
preference, and stability. Despite its departure from conven-
tional raycasting, its converging behavior contributed to a
strong sense of intuitiveness. CDRayDir was better suited
for moderate-precision tasks where speed and ease of control
were prioritized. In contrast, CDHandPos revealed a trade-off
between perceived accuracy and user comfort, caused by a
disconnect between hand motion and pointer response. These
findings emphasize the importance of aligning interaction
techniques to task demands. Overall, CDRayRev appears most
appropriate for fine manipulation, while CDRayDir may be
beneficial for general-purpose contexts.

3) Limitations & Future Works: Although ForceCtrl
demonstrated clear benefits in both objective performance and
subjective responses, there remains room for refinement. In
our implementation, higher force levels (e.g., “3:Moderate”
and “7:Very Strong”) were chosen to ensure stable sensing, but
repeatedly exerting strong force may be physically demanding.
While users would likely activate high-precision states less
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frequently in practice, increasing force detection sensitivity
could improve responsiveness and user experience. Likewise,
enhancing force classification accuracy and speed would help
reduce latency in state transitions. Although this study focused
on experienced hand-raycasting users, the system is scalable to
broader populations due to its controller-free design, familiar
gestures, and minimal cognitive effort. In addition, we focused
on user-defined force input rather than gesture recognition, but
the wristband’s potential for out-of-sight interaction could be
further explored in future work.

While we adopted a discrete state approach to balance
usability and interaction clarity, future work may explore
hybrid strategies that combine continuous control of CD gain
with discrete state transitions. Such an approach could offer
finer-grained precision while preserving distinct interaction
phases, potentially enhancing user performance in complex
spatial tasks. Incorporating real-time visualization of force
classification could also assist users in maintaining more con-
sistent control. A proper visual feedback will reduce cognitive
effort [68] and improve performance especially during high-
precision tasks. Finally, exploring use cases could further
demonstrate the system’s practical utility. We anticipate our
system to support high-precision tasks in dense 3D environ-
ments, such as those found in advanced AR/VR applications.

VII. CONCLUSION

We introduced ForceCtrl, a novel 3D hand raycasting tech-
nique that enables users to control pointing precision through
user-defined pinch force. By applying CD gain directly to
the ray, the system offers a target-agnostic, bare-hand method
for refining pointing accuracy. Our evaluation demonstrated
that ForceCtrl significantly improves pointing performance,
particularly for small and distant targets. We also proposed and
compared three CD gain strategies, highlighting the benefits
of ray convergence in high-difficulty tasks. These findings
underscore the potential of personalized, force-based input as
a scalable and effective modality for precise 3D interaction.
Future work may explore more stable sensing, broader task
generalization, and integration with multimodal feedback to
further expand the utility of ForceCtrl. We believe this research
contributes to advancing 3D interface design for professional
and immersive contexts that involve complex visual data and
demand high pointing precision.
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