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Visualizing Hand Force with Wearable Muscle Sensing for
Enhanced Mixed Reality Remote Collaboration

Hyung-il Kim , Boram Yoon , Seo Young Oh , and Woontack Woo

Fig. 1: Prototype system overview for remote collaboration between a worker and an expert. A remote worker’s hand force is measured
using an sEMG armband, and can be augmented by (b,e) changing the color of hand mesh or (c,f) augmenting gauge beside local
worker’s hand. A local expert monitors remote worker’s behavior through (a-c) first person view or (d-f) third person view.

Abstract—In this paper, we present a prototype system for sharing a user’s hand force in mixed reality (MR) remote collaboration on
physical tasks, where hand force is estimated using wearable surface electromyography (sEMG) sensor. In a remote collaboration
between a worker and an expert, hand activity plays a crucial role. However, the force exerted by the worker’s hand has not been
extensively investigated. Our sEMG-based system reliably captures the worker’s hand force during physical tasks and conveys this
information to the expert through hand force visualization, overlaid on the worker’s view or on the worker’s avatar. A user study was
conducted to evaluate the impact of visualizing a worker’s hand force on collaboration, employing three distinct visualization methods
across two view modes. Our findings demonstrate that sensing and sharing hand force in MR remote collaboration improves the
expert’s awareness of the worker’s task, significantly enhances the expert’s perception of the collaborator’s hand force and the weight
of the interacting object, and promotes a heightened sense of social presence for the expert. Based on the findings, we provide design
implications for future mixed reality remote collaboration systems that incorporate hand force sensing and visualization.

Index Terms—Remote collaboration, mixed reality, sensing, visualization, remote assistance

1 INTRODUCTION

Mixed reality (MR) technology, including augmented reality (AR) and
virtual reality (VR), has the potential to revolutionize the way we work
and collaborate by seamlessly integrating digital and physical elements
into our daily lives. One application of MR technology is the remote
collaboration system, which enables people to collaborate and share
information in real-time, regardless of their physical location. Unlike
traditional 2D video-based remote communication systems, an MR
remote collaboration system allows users to interact with each other in
a more natural and immersive way.

One of the main use cases of MR collaboration is remote expert
scenario, where a remote knowledgeable person guides a local worker
performing a physical task [11]. In this scenario, a remote expert moni-
tors a worker’s task by watching a worker in first-person view [24, 42]
or in third-person view [2, 43] to understand the worker’s task and
workspace. Prior research has investigated various remote communica-
tion cues, such as gestures, gaze, movements, and physiological data,
for enhanced collaboration. However, an area that remains underex-
plored is the incorporation of hand force data, which can enhance the
understanding of hand activity for more effective collaboration.

In current remote collaboration scenarios without hand force in-
formation, challenges may arise. For example, estimating the weight
of objects becomes difficult, potentially leading to errors or miscom-
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munication. Additionally, when a worker must exert minimal force
with delicate materials, the lack of hand force data hinders effective
guidance. Without this crucial information, the expert may struggle to
provide accurate instructions, resulting in damage or accidents. Incor-
porating hand force information into MR remote collaboration systems
can mitigate these issues and improve collaboration experiences.

In this paper, we propose a mixed reality remote collaboration sys-
tem that incorporates the measurement and visualization of a worker’s
hand force to improve the flow of information and enable more effective
collaboration. By using surface electromyography (sEMG) sensors to
measure the force of a user’s hand and displaying this information visu-
ally to the expert, our system provides a more detailed understanding
of the worker’s actions and intentions. This allows the expert to more
easily understand and respond to the worker’s actions, leading to more
effective collaboration.

To evaluate the effectiveness of measuring and visualizing a worker’s
hand force in an MR remote collaboration system, we conducted a user
study to compare the impact of this feature on various aspects of col-
laboration performance from the expert’s perspective. Specifically, the
study measured the effect of visualizing hand force information on
an expert’s awareness of the worker’s task, social presence, weight
perception, force perception, and mental effort. The results of the study
indicated that shared hand force information significantly improved the
expert’s awareness of the worker’s task, as well as the expert’s percep-
tion of the weight and force of objects being manipulated by the worker.
It also led to a higher level of social presence and reduced mental effort
for the expert. These findings suggest that measuring and sharing hand
force can be a valuable addition to MR remote collaboration systems.

In summary, the main contributions of this paper include:

• Developing a novel MR remote collaboration system that shares
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the user’s hand force, utilizing an off-the-shelf sEMG sensor for
simple calibration and hand force estimation

• Reporting on a user study conducted for evaluating the proposed
concept of sharing hand force in MR remote collaboration

• Providing implications and design guidelines for incorporating
hand force data into MR remote collaboration systems

2 RELATED WORK

2.1 Remote Communication Cues
To assist mixed reality remote collaboration, various uses of aware-
ness cues are investigated to enhance collaborative performance and
social presence. Awareness cues are used in MR remote collaboration
to enhance collaborative performance and social presence by providing
visual indicators of the other person’s activity, attention, or physiologi-
cal signals. In asymmetric remote collaboration between a worker and
an expert, remote communication cues can be classified into two types:
expert-to-worker cues and worker-to-expert cues.

The expert-to-worker cues, including hand gestures, hand pointers, or
sketch cues, are employed by the expert to guide and instruct the worker
remotely. Hand gestures and hand pointers can be used by the expert to
indicate the location, orientation, and movement of objects or tools to
the worker [21, 22, 35]. Sketch cues, such as drawing annotations on a
video feed, can be used by the expert to provide visual instructions and
annotations to the worker, indicating the desired movement or action
[21,22]. Shared gaze has also been explored as a remote communication
cue in order to improve the alignment and understanding of the task
between the remote users by highlighting where each of them is looking
[2, 12, 35].

On the other hand, worker-to-expert cues are utilized to enhance the
expert’s understanding of the worker’s state and actions, thus helping
the expert to provide more accurate feedback and guidance. Prior re-
search in this area has focused on sharing various information such
as worker’s movement, gaze tracking, first-person view (FPV) video,
and physiological signals to provide the expert with more information
about the worker’s actions and the task environment. The use of FPV
video [21, 22, 24, 42] has been widely used to provide the expert with a
live video feed of the worker’s task environment, which can improve
the expert’s understanding of the worker’s actions and progress in
real-time. Sharing the movement of the worker and the surroundings
by sharing the real-time pointcloud [2, 43] provides the expert with
real-time information about the workspace and the worker’s actions.

Moreover, researchers also have explored on sharing physiological
data to enhance remote collaboration in terms of presence and immer-
sion. Previous research has demonstrated that visualizing physiological
cues, such as galvanic skin response (GSR), blood pressure, and respi-
ration rate of a local worker in traditional video-mediated collaboration
scenarios can aid remote experts in interpreting the real-time emotional
behaviors of the local worker [40]. Empathy Glasses [27] explored the
use of gaze data, facial expressions, and physiological signals such as
heart rate and galvanic skin response as the remote communication
cue in AR scenarios. More studies have been conducted on sharing
physiological signals in social VR [26] or collaborative VR gameplay
scenarios [9, 10]. In MR scenarios, Jing et al. [17] explored the use of
heart rate in MR remote collaboration.

However, these remote communication cues alone may not provide
sufficient information to accurately determine the intensity of the task
being performed by the worker. For example, important information
such as the amount of force being applied by the worker or the weight
of the object being lifted may not be conveyed. Sharing the worker’s
hand force information can enable the expert to better understand the
actions and intentions of the worker, providing the expert with a more
complete picture of the worker’s task. This can improve the accuracy
and precision of the expert’s guidance, leading to more effective and
efficient collaboration.

2.2 Sensing and Visualizing Hand Force
In order to share the amount of force the worker is exerting on their
hand with a remote expert, the system needs to measure and visualize

the hand force in real-time. This can be accomplished using a force
sensor placed on the worker’s hand, which measures the amount of
force being applied. This reading can then be transmitted to the expert,
who can view it on their own device using a graphical display. This
allows the expert to see the amount of force the worker is using in
real-time, which can be helpful in providing guidance and feedback
to the worker. By providing this information, the expert can help the
worker to use the appropriate amount of force for the task at hand,
ensuring that the work is completed safely and effectively.

Different techniques have been developed to measure hand force,
such as sensors placed on the hand, handheld devices [1, 25], gloves
[30, 41], or other wearable devices. These techniques allow for the
measurement of hand force in a variety of scenarios. However, on-
hand instrumentation can be problematic because it can hinder the
worker’s hand movements or tactile sense. This can make it difficult
for the worker to perform tasks with precision and dexterity, reducing
their overall effectiveness and productivity. Therefore, a force-sensing
method that does not require on-hand instrumentation is necessary.

One approach to non-instrumented hand force sensing is using vision-
based techniques [33,34]. These systems use a camera to capture images
of the hand and objects, analyze the images, and estimate the amount
of force being applied. Although this approach has the advantage of not
requiring any instrumentation, it can be limited in terms of accuracy and
precision. Moreover, it is not applicable to unknown types of objects or
objects with the same shape and different weights.

Another approach is using wearable devices on the user’s wrist or
arm to measure the amount of force exerted on the hand or arm. As
this approach does not require on-hand instrumentation, the user’s
hands are free to move, and tasks can be performed without any hin-
drance. There have been several studies that have investigated the use
of wearable devices to measure hand force, including the use of sur-
face electromyography (sEMG) [3, 4, 14, 28, 38], force myography
(FMG) [44], photoplethysmography (PPG) [6], acoustic sensors [16],
and wrist topography [39]. These studies have demonstrated that these
wearable devices can provide data on hand force, allowing researchers
to track changes in hand and arm strength over time.

However, one issue with using wearable devices to measure hand
force is that they often need to be re-calibrated each time the user puts
them on. This is because factors such as the position of the device
on the user’s body, changes in skin conductance, and other sources
of noise can affect the sensor measurements. To ensure that the data
collected is reliable, regular re-calibration is necessary. Therefore, a
simple calibration process is necessary to make the system easy to use.

In terms of visualizing hand force in remote collaboration scenarios,
not much has been investigated so far. Although, some research has
been done on visualizing hand forces or grasping feedback [7, 36] in
AR or VR systems. One way to visualize hand force is to use a gauge
display to show the level of force [20, 44, 47]. Gauge visualization
provides a quantitative representation of the value, allowing the user
to more easily monitor the current level. Another method is to change
the color of the hand to indicate the magnitude of the force. Virtual
Mitten [1] showed changing the color of the virtual hand model to
visualize the amount of force exerted on the user’s hand, and SoftAR
[37] investigated body appearance effect that changes the surface color
of the user’s hand according to pushing force in spatial AR scenario.
Finally, there is arrow-based visualization method that visualizes the
direction and the amount of force from the contact point [33, 34].

Compared to prior works, our research investigates sensing and visualiz-
ing worker’s hand force to enhance mixed reality remote collaboration.
In this paper, we describe the system design and implementation de-
tails of our MR remote collaboration system that senses, shares, and
visualizes worker’s hand force to expert. We also describe the report
on a user study that investigates how sharing and visualizing remote
worker’s hand force can enhance remote collaboration.

3 SYSTEM DESIGN

To investigate the use of the hand force cue in MR remote collaboration,
we developed a prototype MR remote collaboration system that shares
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Fig. 2: System diagram of the prototype system.

the remote worker’s hand force with the local expert. Figure 1 shows an
overview of our system. A remote worker wears an AR head-mounted
display (HMD) with a 3D hand tracker and an sEMG armband on
the forearm. Our system senses a worker’s hand force with a forearm
sEMG armband, and allows a local expert to monitor a remote worker’s
view with augmented hand force. Our MR remote collaboration system
supports two view modes (first-person view - FPV, third-person view -
TPV) and two hand force visualizations (Mesh, Gauge). This section
describes the design and implementation details of our proposed system.

3.1 Measuring Hand Force
To share the hand force exerted by the user, the hand force is necessary
to be measured first. One method of measuring the hand force involves
installing a load cell to each object the user interacts with and measuring
the applied force. However, it needs modifications for the workspace
environment and is not applicable to various scenarios. To be applied to
various environments without modifying the workspace, the user’s hand
force must be measured using wearable devices. A simple wearable
solution could be using a glove with pressure sensors, but wearing a
glove is obtrusive and hinders tactile sensations of the hand. We wanted
to design a system that can measure hand force while the user is using
bare hands, without instrumentation.

As the forearm muscles are directly involved in the movement and
force exertion of the hand, we opted for a forearm-worn sEMG sensor
to measure hand force. Previous studies have employed forearm elec-
tromyography to determine finger touch pressure [3,4], or the weight of
handheld objects [28]. The use of a forearm-worn sEMG sensor offers
a non-intrusive solution, allowing users to perform tasks with their bare
hands while still accurately capturing hand force data.

3.1.1 Calibration
To measure the force the remote worker exerts on one’s hand, we
used a multi-channel sEMG armband worn on the worker’s forearm.
Since there are substantial variations of sEMG signal between people
due to different anatomical properties (e.g., the position of muscle
and bones) or different skin conductance, user-dependent calibration
is needed. Also, as electrode placement changes with each armband
usage, calibration is needed every time the user wears the sensor.

We describe the signal processing and propose a simple calibration
method for measuring hand force exertion for a specific hand posture.
From our empirical observation with the sEMG armband, we observed
that taking a hand posture produces certain levels of EMG signals,
and exerting force on that posture produces additional levels of EMG
signals. From this observation, we define the total muscle exertion as
the sum of posture exertion, which is the muscle exertion to make a
certain hand pose and force exertion, which is the additional amount of
muscle exertion. We define total muscle exertion as Ei, posture exertion
for sEMG channel i Ep,i and force exertion for sEMG channel i E f ,i.

To measure the muscle exertion, we measured the mean absolute
value for each channel for noise reduction and a more stable muscle
activation signal for each sEMG channel. The mean absolute value for
channel i is defined as MAVi =

1
n ∑n

j=1|emgi j|. To solely measure pos-
ture exertion, we additionally measured the amount of muscle exertion

required to make certain hand posture. Then we measured total muscle
exertion, while exerting force on the hand. By subtracting posture exer-
tion from total muscle exertion, we can get force exertion, which is the
additional amount of the muscle exertion to exert force.

3.2 Viewing Modes

Our target remote collaboration scenario is asymmetric collaboration,
where an expert observes the worker’s behavior and provides instruction.
To share a remote worker’s hand force in MR remote collaboration, we
designed the system to support two types of perspective modes for the
expert: first-person view (FPV) and third-person view (TPV).

For the first-person view (FPV) mode, the egocentric view of the
remote worker is shared with the local expert [18, 21, 22]. The remote
worker’s hand force is augmented on the video of the remote worker’s
view, and the real-time video is streamed to the local expert’s VR HMD.

For the third-person view (TPV) perspective, on the other hand, the
local expert has a view independent of the remote worker. We assume
that the remote worker is represented in a 3D virtual avatar using real-
time pose tracking [31] or real-time 3D volumetric scan [32]. Also,
we assume that the worker’s workspace and individual objects have to
be tracked or reconstructed [2, 8] in real-time. Then the local expert
wearing VR HMD can see a remote worker manipulating real objects
via a virtual avatar and virtual objects, where the remote worker’s hand
force is augmented on the avatar’s hand.

3.3 Hand Force Visualizations

To visualize the amount of force exerted on the remote worker’s hand,
we designed two different hand force visualizations: a Gauge visualiza-
tion and a Mesh visualization.

Gauge visualization augments linear gauge beside remote worker’s
hand, and is widely used to visualize the amount of certain values.
Gauge visualization can provide a clear and concise representation of
the amount of force being exerted. By augmenting a linear gauge next
to the remote worker’s hand, it allows the user to easily see the exact
amount of force being applied. This type of visualization can be useful
in situations where precise measurements of force are important.

For Gauge visualization, we augmented 3cm x 10cm linear gauge
8cm beside user’s dominant hand. Measured hand force is represented
as red bar ranging bottom to top of the linear gauge, where bottom
is zero and top is the pre-defined maximum force. For better reading
of the gauge, we adjusted the orientation of the linear gauge for each
viewing modes to face the viewer (Figure 1(c,f)).

Mesh visualization visualizes hand force exertion by superimposing
red mesh on the remote worker’s hand, which represents the amount
of hand force using the intensity of color [1, 37]. Mesh visualization
provides a direct and intuitive representation of hand force exertion
and does not occlude surroundings. This can be particularly useful
in applications where the expert needs to focus on the worker’s hand
itself, or where the expert needs to maintain situational awareness of
the surroundings while monitoring the worker’s hand force exertion.

For Mesh visualization, we used a virtual hand model that fits the
worker’s hand to superimpose on the worker’s hand (Figure 1(b,e)).
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(a) (b)

Fig. 3: Handheld object and grasping methods used in the validation
study. (a) Cylindrical grasp and (b) Spherical grasp.

The color value of the mesh is adjusted from white to red, where white
represents no exertion and red represents maximum force exertion.

3.4 Implementation

The prototype system was developed using the Unity (2019.4.4f1)
game engine running on a Windows 10 PC (Intel Core i9-7920X CPU,
2.90GHz, 32GB RAM, NVIDIA GeForce RTX 2080Ti). For the AR
HMD for the remote worker, we used Meta 2 optical see-through HMD
with a Leap Motion sensor attached for hand-tracking. Meta 2 has a
diagonal field of view of 90-degree, and supports 1,280 x 1,440 pixels
resolution per eye with a refresh rate of 60Hz. For the VR local expert
side, HTC Vive was used to display the remote worker’s view or the
remote worker’s avatar with the augmented remote worker’s hand force
cue. HTC Vive supports 1,080 x 1,200 pixels resolution per eye with a
refresh rate of 90Hz. Windows 10 Laptop (Intel Core i7-8750H CPU,
2.20GHz, 16GB RAM, NVIDIA GeForce GTX 1070) was used to
drive the VR HMD on the local VR expert side.

We used the Myo armband for an sEMG sensor array. The Myo
armband is a low-cost commodity sEMG device worn on the user’s
upper forearm, which has 8 dry electrodes. The Myo armband streams
samples at a 200Hz rate from eight channels in an integer value ranging
from -128 to 127.

4 VALIDATION STUDY

Prior to the main study, we conducted a validation study to validate that
our sEMG-based hand force estimation algorithm produces reliable
output for different hand postures. The goal was to show that the
estimated hand force shows a correlation with the user’s hand force.
Since grasping force is proportional to the grasped object’s weight,
we controlled the weight of the object the user is lifting. We prepared
five cylindrical objects of identical shape and size (6.5cm in diameter,
19.5cm in height), weighing 200g, 400g, 600g, 800g, and 1000g.

The participants were wearing the Myo armband on the thickest
part of their right forearm and sitting at a table during data collection.
To measure hand posture exertion, participants were asked to set up a
grasping posture and to relieve their strength. Then the EMG samples
were collected for three seconds. In each lifting trial, participants were
asked to lift the object for a duration of three seconds, and EMG data
were collected during each lift. The whole data collection process con-
sisted of five lifts per object, and the order of the lift was randomized.

Moreover, to ensure the system operates consistently across vari-
ous grasping poses, two different grasping postures (cylindrical grasp,
spherical grasp) were used to collect the data, and ten participants were
recruited for each pose (Figure 3). Therefore, a total of 20 participants
(10 participants x 2 grasping postures) were recruited for data collection
and 15,000 samples were collected per participant (5 objects x 5 lifts x
3 seconds x 200 samples/s). The data collection procedure took around
5 minutes for each participant, and the participants could pause and
have a break anytime during the study.

After collecting the data, force exertion was calculated using the
methods described in Section 3.1, and then normalized to the mean
value when lifting a 1000g object. A linear regression analysis was then
performed on the relationship between the weight of the lifting object
and the force exertion.
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Fig. 4: The results of the validation study using (a) cylindrical grasp
and (b) spherical grasp. The estimated weight is normalized for each
participant using the average output with a 1000g object.

Figure 4 shows the results of the validation study. The linear re-
gression analysis showed a high level of correlation for both grasping
methods. The results for the cylindrical grasp method showed a cor-
relation coefficient of R = 0.89, a mean error of M = 115.36g, and
a standard deviation of SD = 99.15g. For the spherical grasp, the re-
sults showed a correlation coefficient of R = 0.92, a mean error of
M = 98.87g, and a standard deviation of SD = 90.61g. These results
suggest that the proposed method was able to accurately predict the
weight of the objects for both grasping methods with a high degree of
correlation.

5 USER STUDY

We conducted a user study to verify the proposed system and investi-
gate how shared hand force cue affects the local expert’s collaborative
experience while observing their remote partner’s task completion. For
the user study, we set the following research questions:

RQ1 Does sensing and providing a remote worker’s hand force cue
help an expert to understand a remote worker’s task?

RQ2 How do the viewing modes affect the MR remote collaboration
with shared hand force?

RQ3 How do hand force visualization methods affect the expert’s per-
ception on MR remote collaboration with a remote worker?

The main focus of this research is developing and verifying an MR
remote collaboration system with shared hand force. Therefore, RQ1
is our primary research question asking whether the shared hand force
actually improves MR remote collaboration. RQ2 and RQ3 are our
additional research questions, asking how the different viewing modes
and visualization methods influence user’s experience.

5.1 Task
To evaluate the effectiveness of visualizing the worker’s hand force to
the expert under different viewing modes, we designed a user task that
requires visualizing the worker’s hand force information to the expert.
The main task was ordering the weights of the cylindrical objects lifted
by the worker from the expert’s perspective. For the user study, we set
up an MR-based remote collaboration application, and the participants
experienced each view sharing mode (FPV and TPV) in VR. Because
the collaborator’s body movement and reaction should be consistent
across all participants for the weight ordering task, the pre-recorded
sequence in first-person and third-person view was prepared beforehand
by the researcher.

For the first-person view, sequences were prepared in 2D video by
placing the video in front of the participant in VR. The size of the
displayed video was 60cm in width and 33.8cm in height, positioned
in front of the participant at a distance of 50cm. And for the third-
person view, the real-time pose of worker’s head, hands, and objects
were recorded for each sequence. For the playback, the motion of the
objects are replayed, and the motion of the avatar was generated by
applying inverse kinematics algorithm with the pre-recorded motion of
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(a) (b)

Fig. 5: Placement of the cylinders for the user study. The cylinders were
marked in alphabetical order. Left: First-person view (FPV), Right: Third-
person view (TPV).

the head and hands. The worker’s avatar was positioned 1m in front of
the participant, facing toward the participant.

The objects to be ordered were the same as the ones used in the
validation study - cylindrical objects weighing 200g, 400g, 600g, 800g,
and 1000g. As illustrated in Figure 5, the IDs of the cylinders were
marked in alphabetical order: The leftmost cylinder was marked as ‘A’
and the rightmost as ‘E’. In each condition, the participant observed a
sequence of the remote worker lifting each object in the left to right
order. After observing the sequence, participants were asked to arrange
the cylinders by weight from the lightest to heaviest, by pressing the
alphabet-marked front button with the controller.

5.2 Experimental Conditions and Hypotheses
To answer the main research question (RQ1), we postulated the follow-
ing hypotheses:

H1. Users will require less time to order the weights when the collab-
orator’s hand force cue is provided.

H2. The discrimination accuracy will increase when the collaborator’s
hand force cue is provided.

H3. Users will perceive higher social presence when the collaborator’s
hand force cue is provided.

H4. Providing hand force cue will increase users’ perception of the
collaborator’s hand force and the weight of the collaborator’s
interacting object.

H5. Providing collaborator’s hand force cue will decrease users’ men-
tal effort.

As the primary aim of the user study was not to compare performance
between each viewing mode and visualization type, no hypotheses were
formulated regarding these aspects.

5.3 Study Design
The experiment was a 2x3 within-subject design to observe how the
user’s task performance and experience differ among the hand force
visualization types in each viewing mode. The independent variable
View had two levels (First-person View (FPV) and Third-person View
(TPV)), and the second variable Vis had three different levels (None,
Mesh, and Gauge). All three visualization types were exposed to the
participants under the two types of viewing modes, and a total of six
experimental conditions were performed.

The experiment was conducted with recruited participants, and the
researcher asked them to assume the following: The 3D human avatar
in front of them (TPV condition) or the shared video (FPV condition)
represents the worker’s task, and they are remotely working together.
The order of the two viewing modes was randomly assigned for each
participant to avoid ordering effects, and the order of the three visu-
alization types was also counter-balanced based on a Latin Square
Method.

5.3.1 Measures
As dependent variables, we measured both objective and subjective
factors. The objective task performance measures, including ordering
time and ordering error, were collected during every trial of the user
task logged by the application. The ordering time was calculated based
on the time taken from the end of sequence playback to enter an answer.
For the ordering error, we used the Kendall tau rank distance [19]

between the correct answer and the participant’s input. Kendall tau
rank distance Kd can be defined as the total number of discordant pairs
between two ranking lists τ1 and τ2:

Kd(τ1,τ2) = ∑
{i, j}∈P,i< j

K̄i, j(τ1,τ2) (1)

where P is the set of unordered pairs of distinct elements in τ1 and
τ2, K̄i, j(τ1,τ2) = 0 if i and j are in the same order in τ1 and τ2, and
K̄i, j(τ1,τ2) = 1 if i and j are in the opposite order in τ1 and τ2. Since
user input is the ranking list of length 5, ordering error is an integer
value from zero (correct input) to ten (completely opposite input).

As subjective measures, we measured social presence, force and
weight perception, subjective mental effort, and likability after finishing
each hand force visualization condition given as a post-task question-
naire (Figure 6). Social presence, which is defined as the ‘sense of
being together,’ is an important indicator of assessing how the remote
collaboration system sufficiently conveys the feeling of communicat-
ing with each other [5, 15]. To investigate the effectiveness of hand
force visualization for remote collaboration, social presence was set
as a dependent factor with utilization of a questionnaire based on the
Networked Mind Measure of Social Presence proposed by Harms and
Biocca [13]. Their social presence measurement includes an essential
aspect of the mediated interaction, such as co-existence of the part-
ner, mutual understanding, and attention. We eliminated immeasurable
items asking about the perceived social presence of the interaction
partner because the remote partner in the recorded video showed con-
stant action across the participants. As a result, a total of nine items
on a 7-point Likert scale for three sub-scales–Co-presence, Attentional
Allocation, and Perceived Message Understanding–were evaluated.

To evaluate the participant’s subjective perception of force and
weight induced by each visualization type under the two perspective
conditions, we utilized four customized 7-point Likert scale items (1
= strongly disagree; 7 = strongly agree). The four questions were
designed to explore the participants’ perception of whether they could
feel the hand force of the collaborator and the weight of the object
being lifted by the collaborator. The two out of four asked about force
perception (Q1: “I felt like the collaborator was exerting force on the
hand."; Q2: “I felt like the collaborator exerted different force on each
object."), and the rest two items asked about weight perception (Q1: “I
felt the weight of the object that the collaborator lifted."; Q2: “I felt that
the weight of each object (lifted by the collaborator) was different.").

Other factors such as mental effort and likability were also assessed.
A Subjective Mental Effort Questionnaire (SMEQ) [48] was used to
observe differences in participants’ mental load according to experi-
mental conditions during the task, and it was rated between 0 to 150.
The likability measurement, which was also utilized in previous studies
related to the virtual hand representation [23, 29, 46], was evaluated
with a single questionnaire item rated on a 7-point Likert scale. For
further analysis, qualitative data was gathered from post-session and
post-experiment interviews at the end of each Vis and View condition as
illustrated in Figure 6. The questions asked about participants’ subjec-
tive feelings, usability, overall experience, and more general feedback
on each visualization type under each viewing mode.

5.4 Participants

We recruited a total of 24 participants through the university’s online
community board (16 males and 8 females, ages 20-31, M = 25.83,
SD = 3.64). The participant’s previous experience related to VR/AR
and telepresence systems was asked based on the self-reported famil-
iarity level within a 7-point rating scale (1 = novice, 7 = expert). The
resulting average familiarity level was 3.71 (SD = 1.76) for VR/AR ex-
perience, 5.54 (SD = .88) for 2D videoconferencing systems, and 1.46
(SD = .88) for 3D social VR/AR systems. The study was conducted
with Institutional Review Board (IRB) approval in advance, and fol-
lowed COVID-19 safety protocols. The participants were compensated
with $10.
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Fig. 6: Flow chart of overall study procedure

5.5 Procedure

In our within-subject study, participants underwent a total of 36 task tri-
als divided into six trials for each of the two View conditions (FPV and
TPV) and three Vis types. To ensure they were familiar with the process,
two additional practice trials were provided for each View mode. Six or-
dering trials were conducted per Vis condition, with weights distributed
in random order. To minimize potential effects from varying difficulties
of trials, we balanced the frequency of each weight appearing in a
specific order in the sequence as much as possible (Figure 6).

Initially, participants filled out an informed consent form and a
demographic questionnaire about their age and experience with AR/VR
and 2D/3D remote collaboration systems. They were then briefed about
the study, and given enough time to understand the procedure and to
practice with the provided sample trials (Figure 6).

During the experiment, participants evaluated both View conditions
(FPV and TPV) in a randomized order. Each session comprised of
practice, three Vis type evaluations (None, Mesh, and Gauge), and a
post-session interview. After completing six trials, participants filled out
a post-task questionnaire about the exposed condition, which assessed
their subjective perception of the experience.

For the second View condition, the same procedure as the first ses-
sion was followed with proper explanation and a different practice
question. Participants repeated the process for all three Vis types, and
a post-session interview was conducted after finishing all conditions.
This interview consisted of open-ended questions asking about general
experiences with each hand Vis type under the corresponding View
condition. The entire process was performed twice to evaluate both
View conditions in separate sessions.

Each session lasted approximately 20-30 minutes depending on the
participants. Additionally, 10 minutes for the initial briefing and 10
minutes for the final post-experimental interview were allocated. Dur-
ing post-task, post-session, and experimental interviews, participants
removed the VR HMD to avoid discomfort or headaches. On average,
the entire user study took about an hour to complete.

6 USER STUDY RESULTS

In this section, we report the results of the user study. The quantitative
and qualitative results gathered during the main user experiment are
presented in Figures 7 to 11. For the quantitative results, we analyzed
task performance and questionnaire items. For both the objective and
subjective data analysis, we excluded outliers such as contaminated
trials and system errors. The qualitative general feedback was also
collected during the post-task interview, which asked about the overall
experience for each condition.

6.1 Task Performance

The task performance data consists of ordering time (Figure 7(a)) and
ordering error (Figure 7(b)). The data’s normality and the variances’
homogeneity were first tested through measures based on the Shapiro-
Wilk test and Levene’s test. The two-way repeated-measures ANOVA
(α = .05) for parametric analysis was used if the data passed both tests.
For the post-hoc analysis, Bonferroni-adjusted Paired t-test was used
for the pairwise comparison. On the other hand, we applied a two-way
repeated-measures ANOVA (α =.05) procedure with the Aligned Rank
Transform (ART) for non-parametric factorial analysis among multiple
factors [45]. Post-hoc pairwise comparison analysis was also conducted
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Fig. 7: Task performance results (P and V: a significant effect of View
and Vis, respectively): (a) Ordering Time, (b) Ordering Error.

using the Aligned Rank Transform contrast tests with Bonferroni cor-
rection.
Ordering Time The results of the ordering time is summarized in
Figure 7(a). A significant main effect of View was found for the user’s
ordering time (FPV<TPV, F(1,115) = 9.997, p = .002). However, we
found no significant main effect of Vis on ordering time (F(2,115) =
.702, p = .500). There was no significant effect of Vis×View interaction
(F(2,115) = .565, p = .560).
Ordering Error The ordering error was derived based on the rank
distance between the correct order and the order guessed by the partic-
ipant (Figure 7(b)). We calculated the mean value of the Kendall tau
distance measured through repeated trials. If the participants correctly
guessed the order, the value is close to zero. A significant main effect
was found for both View (FPV<TPV: F(1,23) = 10.949, p =.003) and
Vis (F(2,46) = 27.609, p = .001), and the post-hoc analysis showed
significant differences between every pair in Vis (None>Mesh: p <
.001, None>Gauge: p < .001, Mesh>Gauge: p =.037). There was
no significant interaction effect of View×Vis found for ordering error
(F(2,46) = .115, p =.866).

6.2 Subjective Measure
We used the Aligned Rank Transform (ART) for non-parametric analy-
sis (α =.05) [45]. For the pairwise comparison for the post-hoc analysis,
the Aligned Rank Transform contrast test corrected with Bonferroni
adjustment was used. The internal consistency among test items of
7-point Likert scale questionnaires–Social Presence, Force Perception,
and Weight Perception–was examined based on the reliability coeffi-
cient of Cronbach’s alpha.
Social Presence The social presence questionnaire [13] included the
following three sub-scales: Co-presence (CP), Attentional Allocation
(AA), and Perceived Message Understanding (PMU). The aggregated
social presence (SP) score, merging all three sub-scales, was used for
analysis. The internal consistency of the participant’s social presence
scores showed an accepted level of Cronbach’s alpha (α = .841).

We found a significant main effect of both View (FPV>TPV:
F(1,115) = 10.799, p = .001) and Vis (F(2,115) = 3.360, p = .038)
on the aggregated Social Presence(SP). The post-hoc analysis showed
significant differences between None and Gauge type (None<Gauge:p
= .032), and other pairs showed no significant differences (all p > .05).
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Fig. 8: Results of subjective measures on Social Presence (P and V: a significant effect of View and Vis, respectively; I: significant interaction effect
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Fig. 9: Results of subjective measures on user’s perception of force and
weight (V: a significant effect of Vis): (a) Force Perception, (b) Weight
Perception.

The significant interaction effect was also found between two factors
(F(2,115) = 4.815, p = .01): the cross-factor post-hoc comparison
found the interactions of View and visualization types between None
and Mesh (p = .007). In FPV, aggregated social presence was higher
for Mesh visualization than None condition. However, presence was
higher for None condition than Mesh condition in TPV.

We also analyzed the result for each sub-scale. Co-presence (CP)
did not show any significant effect (View: F(1,115) = .208, p = .649;
Vis: F(2,115) = .925, p = .399), nor significant interaction between
View and Vis (F(2,115) = .215, p = .807). Attentional Allocation (AA)
showed a significant effect of View (FPV>TPV: F(1,115) = 18.720, p
< .001), and Vis (F(2,115) = 6.167, p = .003). The pairwise compari-
son revealed significant differences between None and Mesh visualiza-
tion (None>Mesh: p = .002). The significant interaction effect between
View and Vis was also found (F(2,115) = 7.749, p = .001): The post-
hoc comparison found the differences between the two different view
type and None-Mesh pair (p = .002), and also Mesh-Gauge pair (p =
.002). Mesh showed higher Attentional Allocation than None condition
and Gauge condition in FPV. However, Attentional Allocation was
lower for Mesh condition than None and Gauge condition in TPV.

Perceived Message Understanding (PMU) showed a significant main
effect of Vis (F(2,115)= 38.936, p < .001), but there was no significant
effect found for View factor (F(1,115)= 3.333, p = .071). The pairwise
post-hoc comparison showed significant differences on the following
visualization pairs: None<Mesh (p < .001) and None<Gauge (p <
.001). However, other Vis pairs were not significantly different (all p >
.05). The significant interaction effect between Vis and View was found
(F(2,115) = 4.959, p = .009), and the following post-hoc revealed
significant interactions of View and None-Mesh visualization conditions
(p = .006). Mesh showed higher Perceived Message Understanding than
None in FPV condition, but lower Perceived Message Understanding
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Fig. 10: Results of subjective measures on user’s mental effort and
likability (V: a significant effect of Vis): (a) Subjective Mental Effort, (b)
Likability

was observed for Mesh than None in TPV condition.
Force and Weight Perception The questionnaire for user’s force per-
ception (FP) and weight perception (WP) consists of two items each,
and scores obtained from the participants were aggregated to ana-
lyze the results. The internal consistency of the participant’s force
and weight perception showed an accepted level of Cronbach’s alpha
(αFP = .799, αWP = .866). Force perception (FP) showed a significant
main effect of Vis (F(2,115) = 30.453, p < .001): The post-hoc pair-
wise comparison revealed significant differences between None<Mesh
(p < .001) and None<Gauge (p < .001). We found no significant
main effect of View (F(1,115) = 1.539, p = .217) nor significant in-
teraction effect of Vis and View on FP (F(2,115) = 0.019, p = .982).
Weight perception (WP) also showed a significant main effect of Vis
(F(2,105) = 23.968, p < .001). The post-hoc analysis found signifi-
cant differences between the following pairs: None<Mesh (p <.001)
and None<Gauge (p < .001). However, we found no significant effect
of View (F(1,105) = 1.566, p = .214) nor Vis×View interaction on WP
(F(2,105) = 0.698, p = .500).
Subjective Mental Effort To compare the participant’s mental load in-
duced during the task, Subjective Mental Effort Questionnaire (SMEQ)
results were analyzed (Figure 10(a)); A significant main effect of Vis
was found for SMEQ (F(2,110) = 57.942, p < .001). The post-hoc
pairwise comparison found significant differences in every pair of
Vis (None>Mesh: p < .001; None>Gauge: p < .001; Mesh>Gauge:
p = .006). There were no significant effects of View and interaction
on SMEQ (View: F(1,110) = .037, p = .847; Vis×View: F(2,110) =
1.550, p = .217).
Likability The likability (LIKE) was analyzed based on the 7-point
Likert scale question about the most preferred visualization (Vis) con-
dition (Figure 10(b)). A significant main effect of Vis was found on
LIKE (F(2,115) = 52.847, p <.001). The post-hoc analysis with pair-
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Fig. 11: User preference between hand force visualizations.

wise comparison showed significant differences in every pair of Vis:
(None<Mesh: p < .001; None<Gauge: p < .001; Mesh<Gauge: p =
.015). However, no significant effects on LIKE were found from the
other factor as well as interaction (View: F(1,115) = .001, p = .973;
Vis×View: F(2,115) = 2.017, p = .138).

6.3 Post-experiment Interview

The summary of participants’ responses on their preferences among
three Vis is shown in Figure 11. Participants favored different Vis for
each of the two View conditions, coinciding with the result of likability
in Figure 10(b).

In FPV, participants preferred Gauge, as it displayed both an
accurate measure of force and the real hand. In TPV, preference
shifted slightly from Gauge to Mesh, with participants appreciating
various advantages of both options. None was least preferred in both
views due to the lack of information and increased mental effort.

Participants said Gauge helped them most under both View con-
ditions, attributing its usefulness to the clear digitization of force.
None was the most difficult to perceive force and weight in both views
due to the lack of information.

The lack of information with None made participants pay hard
attention to small details of the hands or rely on their intuition,
but the naturalness and familiarity helped them concentrate on
the task and the partner. In contrast, Gauge made participants focus
on the gauge rather than the partner, but helped them identify the
weight order. Mesh received mixed opinions regarding concentration,
naturalness, and problem-solving, with participants noting drawbacks
under both View conditions.

7 DISCUSSION

7.1 Analysis on the Results

Regarding Ordering Time (H1), there was no significant effect of Vis on
the time taken to discriminate the order of the weights. Therefore, we
reject H1, which assumed that the ordering time will be shorter when
hand force visualization is provided. It is possible that participants were
able to think of the answer while viewing the sequence and determining
the order of weights, as most of the participants provided their answers
immediately after the sequence ended.

Ordering error showed a significant effect of Vis, and post-hoc anal-
ysis showed significant differences between every pair (None-Mesh,
None-Gauge, Gauge-Mesh) of Vis conditions. When hand force visu-
alizations were provided, participants accurately ordered the objects’
weights that the collaborator lifted compared to when no hand force
cues were available. From this result, we accept H2, which hypoth-
esized that lower ordering errors will be observed when hand force
information is provided.

Regarding social presence, Aggregated Social Presence (SP) showed
a significant effect of Vis, and post-hoc analysis revealed that the provi-
sion of Hand Force Cue had a significant difference between None and
Gauge conditions. However, no significant difference in social presence
was found between None and Mesh conditions. Therefore, we partially
accept H3, which postulated that social presence would be enhanced
when the hand force cue is provided.

Looking into the subscales of the social presence, the results of our
study revealed that the provision of Hand Force Cue had an effect on
certain sub-scales of the social presence measure, specifically on the
attentional allocation and perceived message understanding. However,
no significant effect was found on the Co-presence sub-scale. One
possible explanation for this is that the provision of Hand Force Cue
may have a greater impact on the cognitive and cognitive-affective
aspects of Social Presence, such as attentional allocation and perceived
message understanding, as opposed to the presence aspect, such as co-
presence. This suggests that hand force cue can be used as an efficient
way of aligning attention and collaboration between remote users.

Regarding the user’s perception on the remote collaborator’s hand
force and the weight of the handheld object, a significant effect of Vis
was found for both force perception and weight perception. They both
also showed significant differences between each None-Mesh and None-
Gauge pairs. Thus, we affirm H4, hypothesizing enhanced perception
of collaborator’s hand force and object weight with provided hand force
cues. This result shows that providing visual cues of the worker’s hand
force significantly affects the expert’s ability to accurately perceive the
collaborator’s hand force and the weight of the handheld object.

Lastly, the result of the user study showed that hand force visualiza-
tion (Vis) had a significant effect on the participant’s mental workload,
and there were significant differences between each None-Mesh and
None-Gauge pairs. We thus accept H5, which hypothesized that provid-
ing hand force information would reduce mental effort to understand
collaborator’s task. It is important to note that these results suggest
that providing the worker’s hand force visualizations can help reduce
cognitive load of the expert in the remote collaboration on physical
tasks.

7.2 Additional Discussions
Regarding the effect of the view type (RQ2), the result of the user study
indicates that the type of view, whether it is a first-person view or a
third-person view, has a significant impact on task performance and the
perception on social presence in MR remote collaboration on physical
tasks. Specifically, the results show that the use of a first-person view
(FPV) led to faster ordering times and lower ordering error compared
to the third-person view (TPV). These findings suggest that providing a
first-person view of the worker’s hand activity may be more beneficial
in terms of task performance in MR remote collaboration on physical
tasks with shared hand force cue. However, the variance in perceived
object sizes and the scale of visualizations across different views may
have also contributed to the results.

Moreover, the results also showed that the type of view has an im-
pact on users’ perception of social presence and attentional allocation.
The use of FPV was found to increase the users’ perception on social
presence and attentional allocation, which may indicate that providing a
first-person view allows for a more immersive and engaging experience
for the expert. The results also suggest that when sharing hand force in
MR remote collaboration, the type of view should be carefully consid-
ered. For example, in tasks that require fast and accurate performance,
such as assembly and disassembly tasks, providing a first-person view
may be more beneficial.

Also, we investigated the use of Gauge and Mesh hand force vi-
sualizations to visualize the worker’s hand force to the expert (RQ3).
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Regarding the difference between Gauge and Mesh visualizations, the
results of the user study showed that the Gauge visualization was found
to be the most effective in terms of ordering error and mental effort and
to be the most likable. The post-experiment interview further confirmed
the preference of participants for the Gauge visualization, particularly
in FPV. Participants reported that the clear digitization of force in the
Gauge visualization helped them to accurately identify the weight order
of the objects. However, in third-person view (TPV), the preference
slightly moved away from Gauge to Mesh, making the favorite less
prominent. This change in preference might be attributed to the differ-
ence between the real hand of FPV and the avatar hand of TPV.

In addition, we discovered some interesting insights concerning the
relative advantages of Gauge and Mesh visualizations. The Gauge visu-
alization provided a more accurate and detailed representation of the
worker’s hand force, allowing the expert to make precise judgments
about the order of weight of the objects being manipulated. On the
other hand, the Mesh visualization, while less precise, was reported as
offering a better holistic view of the hand and the object being manipu-
lated, particularly in the third-person view (TPV). This suggests that
while Gauge is preferred for tasks requiring precision and numerical
understanding of force, Mesh could be beneficial for tasks needing a
broader view and understanding of the manipulation.

7.3 Implications

Based on the analysis of our results, we propose design implications on
MR remote collaboration on physical tasks:
Share worker’s hand force cue in MR remote collaboration on
physical task. Our study results suggest that sharing the worker’s
hand force in MR remote collaboration not only improves the expert’s
understanding of the worker’s task, but also significantly enhances the
expert’s perception of the collaborator’s hand force and the weight of
the interacting object. Moreover, we found that sharing the hand force
of the worker could improve the perception of social presence for the
expert. Therefore, we suggest that sharing the worker’s hand force cue
in mixed reality remote collaboration on physical tasks can improve
the user’s perception and overall collaboration experience.
For tasks that require a fast and accurate understanding of the
worker’s task, sharing first-person view of the worker is recom-
mended. The results of the user study indicate that the use of FPV led
to better task performance including faster ordering time and lower
ordering error. Moreover, FPV also led to a higher sense of social
presence and attentional allocation, indicating that participants felt
more connected to the worker, indicating that participants felt more
connected to the worker and were better able to focus on the task at
hand. Overall, these results suggest that for tasks that require fast and
accurate understanding of the worker’s task, sharing the first-person
view of the worker can be beneficial for improving task performance
and collaboration.
Gauge visualization is recommended for the accurate understand-
ing of the worker’s physical task. Another design implication that
can be derived from the study results regarding the difference be-
tween gauge and mesh visualizations is that gauge visualization may be
more effective in terms of providing an accurate understanding of the
worker’s physical task. This was evident in the ordering error measure
and the mental effort measures, where the participants performed better
with the Gauge visualization compared to the other visualization meth-
ods (None and Mesh). Additionally, the post-experiment interviews
revealed that participants had a strong preference for the Gauge visu-
alization, as it provided a clear digitization of force and helped them
identify the weight order. These findings suggest that for tasks that
require accurate understanding of the worker’s physical task, the use of
the Gauge visualization is recommended.

However, it may be beneficial to provide users with the option to
switch between visualization types, depending on the task requirements.
For example, for the tasks that do not require fast and accurate discrim-
ination, the Mesh visualization may be less distracting to the expert,
allowing them to focus more on the hand and the worker’s movements
rather than the visualization itself.

7.4 Possible Applications
There are various possible application scenarios for our proposed mixed
reality remote collaboration system that incorporates the measurement
and visualization of a worker’s hand force. In these scenarios, the
understanding of the remote collaborator’s exerted hand force plays a
crucial role.
Remote Maintenance and Repair Our proposed system could be
beneficial for remote maintenance and repair tasks, such as PC repair
or vehicle maintenance. In these scenarios, a remote expert can guide
a local worker to apply the correct hand force when handling tools or
parts. This would prevent damages caused by excessive force, ensuring
the task is carried out safely and efficiently.
Personal Training In the context of personal training, our system
could be used to guide individuals in performing physical exercises.
The exerted hand force data would allow the remote trainer to better
understand the individual’s performance and provide personalized guid-
ance. This would be especially beneficial in weight lifting or resistance
training, where the trainer could monitor the individual’s hand force to
ensure exercises are performed correctly and safely.

7.5 Limitations
The results of this study provide insight into the effects of hand force vi-
sualization on collaborative tasks. However, there are several limitations
to consider.

Firstly, the proposed sEMG-based hand force sensing method pro-
duces different outputs for various grasping gestures. To accurately
capture hand force information in real-world scenarios involving a
range of hand gestures, an adaptive calibration method for different
hand gestures may be necessary.

Additionally, we selected and evaluated only two hand force visu-
alization methods. The objective of the user study was to investigate
the impact of sharing hand force information on user performance
rather than comparing various visualization methods. Further research
is needed to extensively explore the hand force visualization methods
and determine the most effective way to display the shared content.

Lastly, the proposed MR remote collaboration system was evaluated
only from the perspective of the expert side using pre-recorded data of
the worker side. It is not clear how well it would perform in a real-time
synchronous collaborative task between a worker and an expert. To
better understand the system’s potential, further research is needed for
real-time collaboration and interaction, and we view our work as laying
the groundwork for such future investigations.

8 CONCLUSION

In this paper, we proposed a system for sharing users’ hand force in
MR remote collaboration on physical task, and conducted a user study
to understand the impact of sharing hand force on the user’s perception.
We proposed a simple calibration and estimation method of hand force
with an off-the-shelf sEMG sensor that can be used for MR remote
collaboration on physical tasks. The results of the user study indicated
that providing the worker’s hand force cues to remote collaborators
can influence their collaboration in terms of task understanding and
subjective measures such as social presence, perception on force and
weight, and mental effort. We additionally explored the effect of the
viewing modes and the visualization methods in MR remote collabora-
tion with shared hand force cue. Overall, this study contributes to the
advancement of MR remote collaboration by proposing the importance
of hand force as a cue and providing insights on the design of mixed
reality remote collaboration systems, which could help designers to
develop effective MR remote collaboration systems on physical tasks.
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