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Figure 1: A mobile device with an omni-directional camera can capture a wide range of information about the user, including 
user’s hand, body, and the surroundings. This allows various sensing techniques, which enable novel applications for mobile 
interaction, including danger detection while on the move, body pose for virtual avatar, spatial gestures for gaming, and more. 

ABSTRACT 
An omni-directional (360°) camera captures the entire viewing 
sphere surrounding its optical center. Such cameras are growing in 
use to create highly immersive content and viewing experiences. 
When such a camera is held by a user, the view includes the user’s 
hand grip, fnger, body pose, face, and the surrounding environment, 
providing a complete understanding of the visual world and context 
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around it. This capability opens up numerous possibilities for rich 
mobile input sensing. In OmniSense, we explore the broad input 
design space for mobile devices with a built-in omni-directional 
camera and broadly categorize them into three sensing pillars: i) 
near device ii) around device and iii) surrounding device. In addi-
tion we explore potential use cases and applications that leverage 
these sensing capabilities to solve user needs. Following this, we 
develop a working system to put these concepts into action, by 
leveraging these sensing capabilities to enable potential use cases 
and applications. We studied the system in a technical evaluation 
and a preliminary user study to gain initial feedback and insights. 
Collectively these techniques illustrate how a single, omni-purpose 
sensor on a mobile device afords many compelling ways to enable 
expressive input, while also afording a broad range of novel appli-
cations that improve user experience during mobile interaction. 
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1 INTRODUCTION 
Omni-directional (commonly known as 360°) cameras are used in 
various ways [31] from photography to capturing experiences. The 
rising trend of virtual reality (VR) and the increasing desire to 
capture and view media content in a more immersive and wider 
format have driven further interest in these cameras. A 360° camera 
is able to capture not only 2D content, but a 360-degree surrounding 
content with an omni-directional feld of view. This has a number 
of advantages such as capturing many people in the scene without 
missing out anyone or any object of interest. It is also much easier 
for users to capture image and video content in any angle, without 
requiring them to aim [26, 30] with a viewfnder. 

Due to growing demand, mobile 360° camera products are now 
common in the consumer market. Consumer products such as the 
Ricoh Theta, Insta360 and GoPro Max are widely available (Fig-
ure 2). In parallel to these developments, modern smartphones are 
increasingly equipped with multiple cameras with wide apertures 
and viewing angles. Indeed, there are existing smartphones with 
built-in 360° cameras such as the Acer Holo360 and Protruly se-
ries (Figure 2 (bottom)). At present, the more popular hardware 
manifestation of this relies on a pluggable 360° camera module for 
a smartphone such as the Insta360 Air, Essential 360 or Huawei 
Envizion 360 (Figure 2). As such, we can envision a multi-camera 
software or dedicated 360° camera hardware solution developing 
in the mobile phone marketplace. The emergence of such cameras 
presents a platform for novel types of sensing technologies for 
mobile interaction, which we explore further in this paper. 

While typical uses of such cameras focus on capturing image 
and video content, in this exploration we ask the question: what 
kind of input sensing and interaction techniques can be enabled if 
there is an omni-directional camera on a mobile device, such as a 
smartphone or a tablet? From the camera’s point of view, it can 
capture the user’s hand, fnger, body, face, leg, and other objects in 
the surrounding environment, when the device is held in one’s hand 
(Figure 1 and 3). It can also capture the surface where it is placed, 
whether on a desk or a charging dock, and activity that happened 
in the surrounding. Based on these observations, we suggest that 
omni-directional camera can aford many existing and novel input 
techniques, using just a single sensor along with standard computer 
vision techniques. Importantly, with the 360° feld of view, it does 
not require the user to specifcally orient the camera to point or 
focus on specifc objects. It works in any orientation. 

Figure 2: Example 360° cameras available on the consumer 
market. From top-left: Ricoh Theta S, Insta360 One X2, GoPro 
Max 360, Insta360 Air, Huawei Envizion 360, Essential 360 
camera module, Acer Holo360, Protruly V10S, D7 and V11S. 

These research questions give rise to our name for this approach, 
namely OmniSense. According to the Oxford dictionary, “Omni” 
means “of all things”, and in “OmniSense” we take an exploratory 
approach to researching the potential of such sensing techniques 
to realize a wide range of input capabilities that are aforded by 
a 360° camera. Our goal is to chart the extent of the design space 
that such sensing afords us. Overall, we contribute three pillars of 
input sensing capabilities: i) near device interaction (e.g., which 
hand, which fnger, back of the device or 3D fngertip), ii) around 
device interaction (e.g., body pose, hand pose, spatial gesture, 
proximity or leg), iii) surrounding device and context-aware 
sensing (e.g., environment, human presence, in-car, tabletop or 
tablet). Such sensing capabilities provide the opportunity to support 
a range of real-world scenarios and to develop various applications. 
Following this, we implement a working system, using a built-in 
360° camera, to put these concepts into action. We select a large 
number of promising applications to implement and demonstrate 
the variety of interactions supported by our solution. 

Some, but not all of the ideas presented here have been indepen-
dently explored in prior work. However, to the best of our knowl-
edge, none of the prior work can enable an all-in-one, omni-purpose 
sensing with only a single sensor. By contrast, we demonstrate that 
a single, built-in 360° camera, can achieve all these sensing capa-
bilities and enable novel use cases. These diferences emphasize 
our contributions which go beyond previous work by integrating 
multiple sensing dimensions to enable an all-in-one, omni-purpose 
sensing that forms the foundation of OmniSense, in particular, the 
exploration of broader design space and the technical implementa-
tion on of-the-shelf hardware. 

Our systematic literature review has highlighted a number of 
common device usage scenarios and envisioned use cases for on, 
around and mobile environment interactions. This provides a rich 
array of interaction patterns, from which we can distill a set of ba-
sic interaction primitives. The re-combination of these primitives, 
in various scenarios, allows us to construct a rich array of new 
techniques and applications. To explore these techniques and appli-
cations, we conduct a technical evaluation and a preliminary user 
study to gain initial insight and user feedback, which will inform 
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future research and developments. In broad terms, this paper pro-
vides an in-depth exploration of a new class of mobile interaction 
techniques with omni-directional sensing. Our contributions are 
therefore multi-fold and can be summarized as follows: 

• Comprehensive exploration of using a built-in 360° camera 
on a mobile device to enable novel input sensing and interac-
tion techniques for mobile interaction, and the exploration 
of design space, scenarios, user needs and use cases. 

• Implementation of a functional, real-time prototype using 
actual mobile devices with a built-in 360° camera, covering 
many of the representative sensing capabilities and use cases, 
demonstrating the technical feasibility of our proposed in-
teractions. In addition, we created video examples for the 
remaining prototypes. 

• A technical evaluation of the sensing results and a prelimi-
nary user study to gather initial feedback and insights. 

• Our workaround method based on screen capture will enable 
other researchers to work with 360° cameras even without 
API access, that is typically not provided by manufacturers. 

In summary, we leverage the 360° camera as an omni-purpose 
sensor for enabling novel input and interaction techniques on mo-
bile devices, by pushing the boundary of what is capable of a single, 
built-in sensor, going beyond previous work on peripheral sensing. 

2 RELATED WORK 
Our OmniSense design space is developed from an analysis of prior 
literature in mobile sensing, input techniques and 360° camera 
research within the feld of HCI. This study of existing work high-
lights the gaps that exist in the literature, where there is limited 
availability of solutions that allows continuous sensing of multiple 
modalities, as shown in comparison Table 1. 

2.1 Input Sensing on Mobile Device 
Improving interaction on mobile devices through novel sensing 
has been an active research area, where an extensive review can be 
found in [35]. Here we focus on the fve main areas that are highly 
related to our work, including i) on and above display interaction, ii) 
back-of-device interaction, iii) around device interaction, iv) around 
body interaction and v) surrounding and environmental sensing. 

i) On and Above Display — First, researchers have augmented 
input on and above the display to enable more expressive interac-
tion, by recognizing which fnger is touching the screen [20, 21, 
51, 73, 78], the fnger angle [70], the hand pose [2, 51] or the hov-
ering fnger [14, 24, 73, 74]. Diferent sensors such as a capacitive 
sensor [24, 70], depth camera [14], prism [74] or panoramic lens 
attachment [73] have been used to enable such capabilities. 

ii) Back-of-Device — Researchers also leveraged the space at the 
back of the device [6, 17, 58] to enable gestures such as back tapping, 
swiping or scrolling input. Simple tapping can be detected using a 
built-in accelerometer [27], but other more complex gestures such 
as swiping or scrolling require adding hardware such as mirror 
[66], ring [72] or touch sensor [6]. 

iii) Around Device — A wider space around the device can be 
useful for sensing how the device is handled by the user [16, 44, 65, 
76, 77], the gripping force [53, 61] or where the fngers are [37]. It 

Table 1: Comparison with related work. OmniSense supports 
all sensing capabilities with only a single, built-in sensor. 
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Hand (G
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Body (P
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roxim
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nment, C
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bjects

   Sensor and Hardware
PreTouch [24]   Custom capacitive sensor
TouchPose [2]   Capacitive touchscreen
Air+Touch [14]   Depth camera
HandSee [74]   Prism attachment

SurroundSee [73]     Panoramic lens attachment
GripSense [16] HandSense [65]  Gyroscope, capacitive sensor

InfiniTouch [37]    Capacitive sensor
PenSight [47]    Wide angle camera

Back-Mirror [66]  Mirror attachment
Finger-Aware Shortcuts [78]  Mirror attachment

Porous Interfaces [20]  Optical sensor on finger
DeepFishEye [51]   Wide angle camera

TapSense [21]  Stethoscope
SideSight [8]  Infrared sensor

SurroundSense [5]  Accelerometer, camera, mic, WiFi
SurfaceSight [36]    360 LiDAR

Project Soli [42]   Radar
BISHARE [79]    Vicon mocap
AirPanes [22]    Vicon mocap

Around Body Interaction [13,14]  Vicon mocap, front camera, IMU
MultiFi [18]   ART outside-in tracking system
MeCap [1]    Spherical mirror attachment

EgoCap [54] Mo2Cap2 [71]   Wide angle camera(s) on headset
Cyclops [11]    Wide angle camera

JackIn Head [32]   Wide angle cameras
Mind The Tap [49]  OptiTrack

Putting Your Best Foot Forward [3]  Accelerometer on leg
Lv et al. [46]  Smartphone rear camera

CrashAlert [23]  Kinect depth camera
WalkSafe [64]  Smartphone rear camera

Director360 [26]   Handheld 360 camera
HindSight [57]  360 camera on helmet

Hand with Sensing Sphere [4]   360 camera on back of hand
OddEyeCam [33]  Wide angle camera

MonoEye [28]   Ultra wide angle camera
BodyTrak [43]  Wide angle camera on hand
Hori et al. [25]  360 camera on hand

OmniSense      360 camera (built-in or add-on)

is also possible to track the non-gripping hand interacting around 
[22, 42, 79] or beside [8] the device using spatial or surface gestures. 

iv) Around Body — The even larger space around the body, 
including the distance and position of the device relative to the body, 
can be used for input and interaction [12, 13, 18], such as enabling 
virtual shelves [39], map navigation [33] or proximity-based screen 
rotation [73]. Interaction techniques based on leg gestures were 
also proposed for when both hands are occupied [3, 46, 62]. 

v) Surrounding and Environment — Finally, sensing the sur-
rounding and environment not only expands the interaction space 
but also enables context awareness, localization [5] and remote 
gesture [73]. It is also useful for safety purposes, such as detecting 
approaching vehicles [40, 64] or obstacles [23, 29] along the path. 

Yet, all of the aforementioned methods either require new hard-
ware, or only support a small number of sensing capabilities when 
using built-in sensors. None is able to ofer an all-in-one approach 
(Table 1). In contrast, OmniSense supports all major sensing capa-
bilities with a single 360° camera already present in smartphones. 

2.2 Wide-angle and Omni-directional Camera 
Using a wide-angle or omni-directional camera for enabling various 
interaction techniques has been explored, especially in the HCI and 
computer vision research communities. For example, researchers 
have attached a wide-angle camera below a tablet [51] to track 
fngers, on a stylus [47] to detect hand gestures or on top of a 
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smartphone [33] for enabling around-body interaction. Researchers 
have also explored placing a wide-angle camera on the chest [11, 28], 
headset [54, 71] or on the hand [43] for estimating body posture. 

Similarly, 360° cameras are also widely used in research. For ex-
ample, Jokela et al. [31] conducted a feld study on how people use 
360° cameras. There is also research work that allows object detec-
tion despite the strong distortion [59, 63]. A 360° camera can enable 
video communication systems with a full spherical display [41] or 
allows remote users to explore the immersive visual environment 
of the local user [32]. Further, it can be attached to a cycling helmet 
[57] and is able to warn cyclists of approaching vehicles outside 
their feld of view. It can be also attached on the hand [4, 25] to en-
able body-centered interactions. Finally, SurfaceSight [36] enables 
touch, user, and object sensing using a rotating LiDAR. 

Closest to our work, Surround-See [73] uses a 360° panoramic 
lens attachment (Kogeto Dot) on the smartphone’s front camera. 
It can recognize the device’s peripheral environment, objects, and 
user activities, which facilitates novel use cases for mobile interac-
tion, many of which are also covered in OmniSense’s design space. 
However, the camera lens used in Surround-See has a limited FoV 
of 56° vertically, which misses signifcant sensing opportunities, 
such as the area on the back of the device, the user’s face and lower 
body, and major part of the environment (Figure 8). In this work, we 
complement these missing capabilities and explore new use cases 
that are only possible using the omni-directional FoV of 360° camera 
in a commercial smartphone, along with technical evaluation. 

Overall, while there have been independent works that explore 
using an add-on wide-angle camera or 360° camera for sensing 
input or objects, we are frst to repurpose the built-in 360° camera 
of a mobile device for sensing the wide extent of the users’ hand, 
fnger, body, face and environment to improve mobile interaction. 

3 OMNISENSE DESIGN SPACE 
The OmniSense design space provides a framework for the consid-
eration of new methods and input techniques, based on the premise 
that ultra wide-angle or omni-directional cameras will become ubiq-
uitous in future mobile devices. The design space is largely inspired 
by previous work on mobile sensing, where our analysis indicates 
several gaps exist in the literature. For example, existing solutions 
could only achieve limited sensing dimensions, and cannot support 
sensing of multiple modalities, with most of them requiring custom 
sensors or an infrastructure tracking system. 

Although wide-angle cameras have been explored, there is a 
large diference between wide-angle and the 360° camera we used. 
Importantly, a 360° camera can capture more visual information 
than a common wide-angle camera (Figure 3 (left)), such as the 
gripping hand, fnger interacting near the device, or on the back 
of the device, the lower body part actions, arm motion and spatial 
gestures, and etc. Hence, our goal is to explore the breadth of this 
interconnected design space, going beyond single-point solutions. 

OmniSense Input Sensing is a family of sensing capabilities 
for omni-directional cameras, owing to the uniqueness of such 
cameras which allows sensing of a broad range of inputs that are 
broadly categorized into three pillars, i) near the device (contact 
and proximate), ii) around the device (body, hand, face, leg) and 
iii) surrounding the device (environment, context, surface). Note, 

user actions and activities can encompass one or multiple sensing 
pillars, as shown in Figure 3, where transitioning between them 
opens up a further range of novel interactions and applications. 

OmniSense User Needs and Use Cases is the rationale for 
the proposed use cases and applications drawn from OmniSense’s 
design space. The interconnected design space afords us the op-
portunity to explore a wide range of techniques, applications, and 
scenarios, while considering emerging user needs and issues in 
using mobile devices. For example, each use case corresponds to 
solving user needs, using either single or combinations of sensing 
dimensions, which we illustrate in the following sections. While a 
use case that includes a single sensing dimension demonstrates the 
feasibility of a single-point example, a use case that leveraged multi-
ple sensing dimensions unleashes the true potential of OmniSense. 

In the following sections, we frst discuss what type of sensing 
capabilities can be achieved, and categorize them into three major 
pillars. Then, we discuss what applications and scenarios can be 
enabled and realized with such sensing. Note that some use cases 
trace through the design space, drawing on multiple sensing dimen-
sions. From this, we then implement interactive prototypes that 
were designed to explore and characterize a variety of interaction 
techniques across the proposed design space. 

While our focus here is on a smartphone, we suggest these tech-
niques are not limited to just smartphones, but also applicable to 
other form factors, such as standalone handheld 360° cameras or 
tablets. In fact, newer standalone 360° cameras are adopting many 
aspects of a smartphone, e.g., some current generation 360° cam-
eras are running a smartphone OS internally (Ricoh Theta and Acer 
Holo360 use Android OS). While some are equipped with tiny color 
touchscreens (GoPro Max, Insta360 X3), which can be difcult to 
operate due to the fat fnger problem. 

3.1 Input Sensing Dimensions and Capabilities 
(What can be sensed?) 

By considering interaction techniques through the lens of 360° 
imagery, what information can the camera capture? As depicted in 
Figure 3 (left), we can observe that the gripping hand and fngers 
are always visible when the user holds the device. The non-gripping 
hand is also visible when the user interacts with the screen using 
two hands, either touching, hovering, or gesturing above the screen. 
Owing to the wide feld of view, the user’s body, face, arm, and legs 
are also visible most of the time, near the optical center. When the 
device is resting fat on a surface (e.g., desk) or mounted (e.g., phone 
charger), the surrounding surface and environment are also clearly 
visible. Based on these observations, we can postulate that various 
objects of interest and activities can be tracked with computer 
vision techniques. Here we discuss these objects in terms of three 
major pillars, by walking through each example. 

Note: Later in Section 4 (Implementation), we show functional pro-
totypes for most of the representative techniques and applications 
described here (highlighted in Bold). For the remaining, we created 
video examples and mock-up videos by applying the sensing tech-
niques ofine (e.g., post-process with OpenPose). These are underlined. 

3.1.1 Near Device Interaction. 
At the near device level - the space proximate to the device 

contains detailed information about the user’s gripping hand and 
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Figure 3: The OmniSense design space: (360° camera view) what the camera can see, from diferent perspectives such as near, 
around and surrounding devices. (Sensing dimensions) what the system can sense, detect and recognize. (User needs) several 
representative users needs that OmniSense can address. (Use cases) what type of use cases and applications can be enabled. 

fnger. For example, OmniSense can detect the grip handedness 
(which hand is holding the device or both hands) (Figure 1.1 
& 1.4) [16] or the grip type (frm or loose). OmniSense can track 
the thumb hovering above the screen (Z-height, speed of tap) 
(Figure 1.7) [24] or the fngers on the back-of-device (back-
tapping, swiping) (Figure 1.2) [37, 58]. OmniSense can also track 
the 3D location of the fnger (Figure 1.5) [74] of the other hand, 
including the hovering state, pre- and post-touch gesture [14, 24], 
and speed of tap. OmniSense can also recognize which part of the 
fnger (index, middle, knuckle) or whether a stylus (Figure 
4d) [21, 73] is being used to touch the screen. 

3.1.2 Around Device Interaction. 
At this level — the space around the device expands the inter-

action area beyond the screen’s boundaries which contains infor-
mation about the user’s body. OmniSense can detect full body 
pose (Figure 1f & 1g) [9], which includes the body posture (stand-
ing or sitting) and state (walking or running), leg gesture (Figure 
1.3) [3], along with head and gaze direction and facial features 
(expression, mood) (Figure 5e). Similar to Surround-See [73], Om-
niSense can also track the non-gripping hand’s spatial move-
ment around the device (gesture, hand pose, pointing direction) 
(Figure 1.8) [22, 79] or touching the face (Figure 1.9) [45]. Finally, 
the camera can measure the device’s spatial relationship to the 
body (proximity, orientation) (Figure 1.6) [13, 18, 73]. 

3.1.3 Surrounding Device and Context Aware Sensing. 
At this level — the extended, large area surrounding the device, 

including the environment, context and the surface where the de-
vice is resting can be sensed, which were explored in Surround-See 
[73]. For example, when held by a user who is on the move, Om-
niSense can detect various objects in front of the users, such as 
approaching cars, humans and obstacles (Figure 1a). OmniSense 
can sense the context, such as which room (bedroom or lecture hall) 
[5, 73] or which vehicle (car or train) the user is currently residing 

in (Figure 1b). Owing to the omni-directional feld of view, it can 
also recognize landmark buildings (e.g., AR StreetView) or localize 
indoor positions even when the device is lowered. This does not re-
quire the users to raise the device for point-and-shoot, hence lower 
cognitive load while on the move. When the device is resting on a 
fat surface (e.g., a desk), or being mounted (e.g., phone charger), 
it can detect various objects (e.g., food, tableware, stationery, 
fnger) (Figure 1d & 1h) or human actions (activity monitoring, 
in-car gesture) (Figure 1c, 1e & 1i) [73] surrounding the device. 

3.2 User Needs and Use Cases 
The sensing techniques and methods described thus far operate 
in an isolated fashion (recognizing which hand, which fnger, etc.) 
without considering use cases. However, our aim is to draw together 
a holistic suite of interaction techniques across the three pillars of 
our design space, that can actually address user needs. Hence, in 
this section, our goal is to explore and enable various applications 
and scenarios that can improve mobile interaction, in which some 
scenarios may use one or more pillars, as shown in Figure 3 (Use 
cases). As these are better illustrated in a video, please refer to the 
supplementary video for a demonstration of all the applications. 

3.2.1 Expressive Single and Two-Handed Interaction. 
Currently, there remains several issues on using a mobile device, 

such as limited one-hand reachability, fat thumb and occlusion 
issue. Hence, these represent user needs that can be addressed by 
OmniSense. OmniSense enables following use cases: 

i) Adaptive UI — Knowing which hand is holding the phone 
allows for the placement of UI elements intelligently [16]. For ex-
ample, a menu or virtual keyboard that resizes and adapts to hand-
edness and grip automatically, as shown in Figure 4 (a). 

ii) Ad-lib Interface — Tracking the thumb’s hover state and 
Z-height allow for an ad-lib interface [24]. For example, Figure 4 
(b) demonstrates that the menu interface fades in when the thumb 
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Figure 4: (a) Adaptive UI (keyboard) that adapts to handed-
ness. (b) Ad-lib interface where the menu interface fades in 
when the thumb approaches. (c) Back-of-device tapping to 
pull down the notifcation bar, sliding to adjust the volume. 
(d) Seamless mode switching, touch from a diferent fnger 
will switch to diferent brush, eraser, thickness or trigger 
menu. (e) 3D fnger interaction where fnger hovering can 
preview messages or control scrolling speed. 

approaches and fades out when the thumb moves away, so as to 
not clutter the video content in a full-screen video player. 

iii) Back-of-Device Interaction — Tracking the index fnger 
on the back-of-device [6] and its 2D location allow for triggering 
smart actions. For example, tapping on the back of the device acts 
as shortcut to launch applications, sliding vertically pulls down the 
notifcation panel, while sliding horizontally on the back adjusts 
the volume continuously, as shown in Figure 4 (c). 

iv) Seamless Mode Switching — Recognizing which fnger 
or object is touching the screen (index, middle, knuckle or stylus) 
[21, 78] allows for seamless mode switching. For example, in a paint 
application, touching the screen with the index fnger switches to 
a brush whereas the middle fnger switches to an eraser. A touch 
by the knuckle calls out the color palette, while a stylus changes to 
a thin brush. All of these work seamlessly without requiring the 
user to open the menu and choose option, as shown in Figure 4 (d). 

v) 3D Finger Interaction — Tracking the 3D location of the 
fnger above the screen allows for various Air+Touch [14] and Pre-
Touch [24] interaction. For example, users can preview a message 
by hovering their fnger on top of it, as shown in Figure 4 (e). A 
slow tap selects an item normally while a fast tap deletes it. By ma-
nipulating the Z-height of the hovering fnger, the user can control 
the scrolling speed of a list. 

3.2.2 Bodily and Spatial Interaction. 
Indeed, a person can be very expressive with the use of gesture, 

pose and body language to express various intentions. However, 
these signals are currently not utilized by mobile interaction. Om-
niSense can capture these body signals to enable expressive bodily 
and spatial interaction in various applications, such as: 

i) VR Video Avatar Controller — Tracking the full body pose 
and facial features allow for immersive interaction and experience 
(e.g., virtual avatar, virtual YouTuber). For example, in a video call 
or live streaming, users can control a 3D virtual avatar using full 
body movement and facial expression, as shown in Figure 5 (a). 

Figure 5: (a) VR avatar control for video conferencing. (b) 
Face touch detection and warning application. (c) Around 
body interaction for zooming and panning a map based on 
the device’s proximity and orientation to the user’s body. (d) 
Leg gesture interaction, a dancing game similar to Dance 
Dance Revolution. (e) Eye closed detection for automatically 
dimming of screen. (f) Spatial gesture (hand throwing) detec-
tion. A good throw of a Poke ball captures the Pokemon! 

ii) Face Touch Detection — Knowing the hand and body loca-
tion allows for on-body interaction. For example, the hand touching 
the body parts or face can be detected [45] to enable mnemonic 
body shortcut [19] or discreet interaction [38]. It can also give 
a warning when users unconsciously touch their faces during a 
pandemic, as shown in Figure 5 (b). 

iii) Around Body Interaction — Knowing the device’s spatial 
relationship to the user allows for around-body interaction [13, 73]. 
For example, users can vary the distance of the device to the body 
for zooming, or alter the position and orientation of the device 
relative to the body for panning a map, as shown in Figure 5 (c). 

iv) Leg Gesture Interaction — When both hands are busy or 
dirty, the legs are free to perform various inputs. Tracking the 
user’s leg allows for leg gesture interaction [3, 46, 49]. A pie menu 
of multiple selections can be performed by stepping one leg forward, 
as shown in Figure 5 (d). Precise step counting is also possible. 

v) Stay Awake and Shoulder Surfng Prevention — Tracking 
the user’s eye gaze allows for intelligently adjusting the screen 
content. For example, when the user is not looking at the screen, 
the screen can be dimmed automatically to conserve battery, as 
shown in Figure 5 (e). If the system detects any stranger other than 
the owner who is peeking at the screen (e.g., shoulder surfng), the 
system can automatically hide sensitive information on the screen 
and warn the user. 

vi) Spatial Gestures — Tracking the other hand interacting 
around the device allows for spatial manipulation [22, 79] or point-
ing [73]. For example, in a game (e.g., Pokemon GO, basketball), a 
user can perform real hand-throwing gestures rather than swiping 
on the touchscreen, as shown in Figure 5 (f). Various shortcut com-
mands [47], such as changing the hand sign (C to copy, V to paste, 
OK to enter) can also be enabled. 

3.2.3 Surrounding and Context-Aware Interaction. 
The user’s surroundings and context contain much information 

for realizing ubiquitous computing. Indeed, prior work such as 
Surround-See [73] have explored capabilities such as recognizing 
the device’s peripheral environment, objects and user activities in 
vicinity to the device. OmniSense covers a full 360° FoV that enables 
further unexplored use cases, such as: 
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Figure 6: (a) Danger detection and prevention, it warns the user if there are approaching humans or cars. (b) Tabletop interaction: 
cookpad. (c) Tablet interaction with color stylus and hand pose shortcuts. (d) Context-aware sensing by recognizing the 
background environment, such as lecture room, cofee shop or in-car. (e) Various events happening inside a car can be detected, 
including seat occupancy, seat belt reminder, hands-on steering wheel detection, using a smartphone, drowsiness, and hand 
gestures for infotainment control. (f) Controlling smart home appliances with a simple fnger-pointing gesture. (g) In a meeting 
room, the remote attendee has a full view of the room and all local attendees, plus detection of the active speaker. 

i) Danger Detection — Understanding the surrounding allows 
for danger detection and prevention [23, 64]. For example, it is dan-
gerous to keep looking at the phone screen and not paying attention 
to the road while on the move, commonly known as smartphone 
zombies. Since the camera has a full view of the environment, such 
that it can provide a warning to the user if it detects obstacles (an ap-
proaching car, pole, or human), as shown in Figure 6 (a). Especially 
during the pandemic era, it supports practicing social distancing 
where people are supposed to stay at least two meters away. 

ii) Tabletop, Tablet, and Stylus — Detecting the objects sur-
rounding the device when it is resting on a surface allows for 
various tabletop applications. For example, it can enable various 
board games or tangible interaction using real-world objects [52] 
for input. In a kitchen scenario, a cookpad application recognizes 
types of food in a bowl and estimates the calorie amount, while 
also suggesting recipes. Moving a mug into position sets a timer, 
which the duration is based on its location, as shown in Figure 6 
(b). In addition, it can track the user’s fnger and allow multi-touch 
interaction on a large surface [8, 36]. The color of a stylus can be 
automatically detected for changing the virtual brush’s color, while 
hand pose can be recognized to draw diferent shapes (fst for circle, 
palm for square), as shown in Figure 6 (c) [47]. 

iii) Context Awareness — Understanding the surrounding con-
text also allows for context-aware sensing and interaction. For 
example, the system can recognize which room (ofce, cafeteria, 
bedroom) or which transport vehicle (car, train, fight) the user is 
currently residing in, and then automatically switches into diferent 
modes, as shown in Figure 6 (d). For example, in an ofce, the phone 
will switch to silence mode whereas, in a bedroom, it will set an 
alarm for the next day. In a personal car, it will launch a navigation 
application whereas in a fight it will switch to fight mode. 

iv) In-Car Scenario — Tracking various events happening inside 
a car is a very compelling use case. This includes detecting the num-
ber of passengers and seat occupancy, monitoring driver attention 
and drowsiness, reminding about unfastened seat belt, warning if 
hands not handling the steering wheel, detecting hand gestures for 
controlling infotainment system, detecting child presence, monitor-
ing various vital signs (respiration, heart rate), and fnally, capturing 
fun in-car moments automatically, as shown in Figure 6 (e). 

v) Smart Home — When the phone rests on a desk or sofa, it can 
still track the user’s hand and the pointing gesture from a distance. 
For example, in a smart home scenario, the user can control various 
appliances just by pointing at them and perform simple gestures 
[73], while sitting comfortably on the sofa, as shown in Figure 6 
(f). It also supports monitoring various human activities, such as 
if someone entered or leave the room, the user’s sitting posture, 
counting the reps of an exercise, or monitoring how long the user 
has been using the PC without resting. 

vi) Conference Call — In a conference call, it provides a panoramic 
overview of the entire meeting site [55], recognize all the attendees 
by name, and detect the active speaker based on detected mouth 
movement or hand gesture, as shown in Figure 6 (g). 

4 IMPLEMENTATION 
Translating this broad idea into a practical all-in-one system entails 
a range of challenges. We created functional prototypes for most 
of the representative techniques and applications described in the 
previous section, which are used in the live demo during user study. 

Owing to the tremendous advancement in computer vision tech-
niques in recent years, many of the proposed sensing techniques we 
outlined in this paper can be implemented using mainstream and 
state-of-the-art (SOTA) techniques, such as convolutional neural 
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Figure 7: (left) Equirectangular image is converted into multiple perspectives, focusing on diferent regions of interest, using a 
corresponding detection module. (middle) body pose & fnger (right) approaching the car in the environment is detected. 

networks (CNN). Since this paper is focusing on exploration rather 
than exhaustive implementation and optimization, we consider our 
implementations as baseline, where future improvement is possible. 

4.1 Hardware 
Throughout our research, we have investigated a few iterations of 
hardware prototypes, as shown in Figure 8. Initially, we hot-glue 
a standalone 360° camera (Ricoh Theta S) on top of a smartphone. 
This prototype allows high-quality images to be streamed to a PC 
in real-time using a USB cable but it was uncomfortable to hold. 

Figure 8: Various hardware we investigated in this work, 
including (left) camera hot-glued to a smartphone, (middle) 
pluggable USB camera modules and lens attachment and 
(right) smartphones with built-in 360° camera. 

Next, we explore other, more practical form-factors. The most 
popular realization of this is the various plug-in 360° camera mod-
ules available for smartphones, such as the Huawei and Essential 
(Figure 8 (middle)). Unfortunately, the manufacturers do not pro-
vide API to access the camera image. Next, the low-cost Kogeto Dot 
lens attachment has a limited feld of view of 56° vertically [73] and 
is not able to see the back of device, face and leg. Therefore, it does 
not fulfll our requirement for omni-purpose sensing. Lastly, we 
strive to achieve the most “ready” form-factor, which we employ 
actual smartphone with a built-in 360° camera, such as the Acer 
Holo360 or Protruly smartphone. Specifcally, the Protruly V10S 
has a dimension of 16.3 cm x 7.4 cm, as shown in Figure 8 (right). 
The body is 0.8 cm thick and the thickest part (including protruding 
lens) is only 1.3 cm. Similarly, there is no API to access the camera 
image. We mainly use the Protruly V10S smartphone in our data 
collection, experiment and user study. For tablet use cases, we use 
the Huawei Envizion 360 pluggable camera module with a tablet, 
because a tablet with built-in 360° camera does not exist yet. 

4.2 Software 
In this subsection, we describe software and processing pipeline to 
unwrap images, capture screens and detect objects. 

4.2.1 Equirectangular Image. 
On the Protruly smartphone, the captured image or video is 

saved locally in a 360-degree equirectangular format. We convert 
the equirectangular image to multiple perspective images, each 
focusing on a diferent region of interest (ROI) for a diferent pur-
pose, as shown in Figure 3 and 7. Then, for each ROI, we apply 
a diferent detection module. First, for the handedness and fnger 
ROI, we apply four custom detection modules (described in the 
next Subsection 4.3) which detect handedness, active fnger, 2D 
fnger and 3D fnger position. For the upper body and full body 
ROI, we apply the body pose estimation module to extract body 
joints information, which is further used for inferring body states 
(e.g., standing vs. sitting, touching the face, eye blinked), as shown 
in Figure 7 (middle). For the environment ROI, we apply an ob-
ject detection module to detect approaching obstacles (e.g., car or 
human for danger detection) or nearby objects (e.g., mug or food 
for tangible interaction), as shown in Figure 7 (right). While this 
approach allows tracking bodies and objects in multiple regions 
simultaneously, it does not allow for a live demonstration, because 
the captured image is saved in the phone for later access, and there 
is no API available to access the built-in 360° camera in real-time. 

4.2.2 On-screen Fisheye Image Capture And Overlay. 
We circumvent the limitation of lack of API access with a novel 

workaround, which is by using a real-time screen capture method 
with Android debug bridge (ADB). By launching the preloaded stock 
camera app, the screen renders the camera viewfnder preview in 
spherical format. Our software then captures the screen content 
(Figure 9) in real-time and forwards it to a remote PC for image 
processing and machine learning, using either a USB cable or WiFi. 

Field of View — Specifcally, the main hardware we used (Pro-
truly V10S smartphone) has a screen resolution of 1920 x 1088 
where the spherical preview area is 1088 x 1088 in pixels, with 
approximately 220+ degree FoV that can be adjusted (drag to rotate 
viewpoint, pinch to zoom). One downside of this screen capture 
method is that it is limited to the fsheye view on the screen, rather 
than the equirectangular format as described previously. Therefore, 
our processing and recognition pipeline is redesigned to deal with 
such limitations (e.g., barrel distortion) and built around it. 

Opaque Overlay — To demonstrate a prototype system that 
works in real-time, we need to capture the camera preview on the 
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Figure 9: (left) Full-screen capture. (middle) For diferent use 
cases, only certain areas are cropped and fed into a neural 
network classifer. (right) Opaque overlay for rendering the 
results received from edge device to the user. 

screen while also rendering results to the user at the same time. For 
this reason, we created an opaque overlay using Android service 
to render results but reserved a transparent region at the center of 
the spherical area to allow the camera view to be screen captured 
(Figure 9). No rendering is allowed over this reserved region. We 
then developed various applications and UI using the overlay. And 
since the gripping hand and fnger are always visible at the center 
of the image, the transparent region is set to the center 600 x 600 
pixels, which only occupied 17% of the total screen’s real estate, 
where the remaining area can be used for rendering, as shown in 
Figure 9. Furthermore, this cropped region is fed as input to the 
neural network, which simplifes the machine learning task. 

Distortion — Although this fsheye image has barrel distortion, 
the user’s body is close to the center of the image where the distor-
tion is minimal, standard body pose tracking methods will work 
without modifcation. In particular, we tried the OpenPose [9] li-
brary which worked very well for tracking the body, hand and face, 
as shown in Figure 10 (a) fsheye. 

Un-distortion — Nonetheless, to obtain optimal body pose re-
sults, we frst unwrap the fsheye image and convert it to diferent 
formats (perspective, equirectangular & cubemap), before apply-
ing body pose tracking. To calibrate, we took multiple chessboard 
images from diferent angles, covering as wide the FoV as possible. 
Then, we apply calibration using OpenCV and OCamCalib [56] 
procedure, to extract parameters of the fsheye camera. From the 
parameters, we generated a pixel-to-pixel conversion map for real-
time undistortion, which is applied for every new frame. Examples 
of the body tracking results for diferent formats can be seen in 
Figure 10. Fisheye has the most information, but the body size is 
unbalanced, where the shoulder appears larger and the legs appear 
shorter. Cubemap appears to strike a good balance, with minimal 
information loss (leg slightly cropped when near to edge). In the 
Perspective image, because the conversion causes high distortion 
near the edge, we had to limit the FoV (approximately 140°). This 
causes the leg to be cropped when it is extended. Equirectangular 
looks good for the middle part of the image, but is highly distorted at 
the top and bottom part of the image. Further, detailed comparisons 
are presented in Appendix A. 

Figure 10: Comparison between diferent image formats for 
body pose estimation. From left: fsheye, cubemap, perspec-
tive and equirectangular. 

4.3 Deep Neural Network Architecture 
Since there are no existing models for tracking hands and fngers 
from the unique camera point of view in our setup, we collect 
data and train convolutional neural networks from scratch. For the 
reset, we adopt existing models such as OpenPose [9] for body pose 
tracking, YOLOv4 [7] for object detection, and I3D [10] for activity 
recognition. On average, all applications run at an interactive frame 
rate (> 10 fps) on an Nvidia GTX1080 GPU. 

4.3.1 Handedness and Active Finger Recognition. 
The recognition of handedness and active fnger can be posed as 

a classifcation task with a few classes. As the hand gripping the 
phone and the fnger touching the screen are always visible in the 
center of the image, we crop only the center ROI (Figure 9) and fed 
this as input to a neural network. We adopted the EfcientNet [60] 
network architecture, as it achieves higher accuracy and efciency 
over existing architectures. Specifcally, we chose EfcientNet-B4 
[60] as it strikes a good balance between accuracy and speed. We 
replace the last layer with another fully connected layer, using a 
softmax activation function. Figure 11 shows example dataset. 

Figure 11: Example dataset for handedness (top) and active 
fnger recognition (bottom). From top-left: right hand, left 
hand, both hands, index fnger, middle fnger, knuckle and 
stylus. Red boxes indicate the cropped region of interest. 

4.3.2 2D and 3D Fingertip Tracking. 
There are existing methods that regress human 3D keypoints 

from a single image [50, 69, 75], of which the most common ones use 
heatmap-based regression. Yet, these approaches largely target a 
single undistorted image. Diferent from the previous work on body 
pose estimation, a fnger captured by the 360° camera is distorted 
and occasionally cropped due to its close distance to the camera, 
thus a conventional method does not work well. Hence, in this 
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paper, we trained a neural network using the dataset we collected, 
to achieve faster inference time and obtain higher precision. Our 
network architecture is shown in Figure 12. 

For 2D fngertip tracking, we use a PoseResNet-like [69] encoder-
decoder-based convolutional network, which employs ResNet-50 
as the backbone to regress 2D heatmaps of diferent fngertips of 
both hands. This is similar to the approach used by Xu et al. [71]. 
Since the 2D regression here is a relatively simple task where the 
fngertip is clearly shown in the camera view without any occlusion, 
we suggest a simple yet efective network such as the PoseResNet 
[69] is sufcient for a baseline implementation, with the advantage 
of reducing both training and inference time. 

For 3D fngertip tracking, estimating the depth of a fngertip from 
a 2D image is a challenging task, especially for a fsheye lens. Xu et 
al. [71] succeeded in estimating the distance of body joints from a 
head-mounted fsheye camera using another stream to estimate the 
depth map, which is adapted to our case. To achieve better accuracy, 
we performed a 2-level stacked training to estimate the depth both 
from the 1st-level output and 2nd-level features, as shown in Figure 
12. The network will output a 2D key point heatmap as well as a 
3D depth map of the corresponding fngertip which we can extract 
the 3D camera coordinates from. 

Hereby, in the following experiment, we only collected data and 
trained the network for estimating the three representative joints 
that are mostly used in mobile interaction: the left thumb, left index, 
and right index fngertip. Nonetheless, it is possible to expand this 
tracking to other fngertips or even estimating a full-hand pose. 
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(256x256x3) Enc-Dec

DepthNet
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(256x256)
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Figure 12: Network architecture for fngertip tracking and 
data collection setup using depth camera. 

5 BASELINE TECHNICAL EVALUATION 
We performed a baseline technical evaluation of OmniSense, fo-
cusing on detecting hand and fnger state, to get a sense of the 
accuracy and robustness of the system. Since the body pose and 
object detection results are obtained using state-of-the-art methods 
from the computer vision literature, we do not fnd it necessary to 
evaluate them in this paper. Nonetheless, we examined diferent 

un-distortion methods and how well they work with standard body 
pose estimation model. Please see Appendix A for more details. For 
each case included in this section, we collect a dataset with our 
device (Protruly V10S), label them manually, train the respective 
neural network model, and evaluate the result. 

5.1 Handedness and Active Finger Recognition 
• Handedness - Which hand is holding the phone? This consists 
of three classes: left hand, right hand, and both hands. 

• Active fnger -Which fnger is touching the screen? This consists 
of four classes: index, middle, knuckle and stylus. 

5.1.1 Data Collection. 
We collected data from fve participants from a local campus 

(mean age: 28.6, one female), for two sessions separated by a day. 
Considering that diferent users may grip the phone diferently, 
and even a single user may grip the phone diferently each time. 
With this in mind, we designed our data collection procedure to 
elicit such behaviors. For handedness recognition, participants were 
asked to hold the phone with their natural and comfortable grip, as 
if they are using the phone normally. They were asked to vary their 
handedness and their gripping behavior slightly while walking 
around the campus (both indoor and outdoor), as shown in Figure 
11. For active fnger recognition, participants were asked to hold 
the phone with their left hand, while performing random fnger 
movements on the screen using the right hand’s index fnger, middle 
fnger, knuckle or a stylus. 1500 images are collected for each case. 
In total, there are 45000 images for handedness and 60000 images for 
active fnger recognition. We train the EfcientNet-B4 [60] network 
(with pre-trained weights) with this dataset, for 30 epochs, using a 
learning rate of 1e-5 and the Adam [34] optimizer. 

5.1.2 Evaluation Procedure. 
We conducted both user-dependent and user-independent eval-

uations. For the user-dependent test, we take a single day’s data 
for training, and the other day’s for testing, then repeat it for 2 
folds. For the user-independent test, we take data from both days 
but leave-1-user-out, train a model for each fold and test on the 
remaining user data, for 5 folds. 

5.1.3 Results and Discussion. 
For the handedness task, the accuracy is 99.55% (user-dependent) 

and 98.98% (user-independent). For the active fnger task, the ac-
curacy is 97.13% (user-dependent) and 96.12% (user-independent). 
Overall, the classifcation results of both the handedness task and 
active fnger task are very accurate and robust, even across users 
(over 96%). Both of these are rather simple tasks, with well-defned 
crop area and small input size, owing to the fact that hand and fn-
gers are always visible at the center of image when user is holding 
and interacting with the touchscreen. 

5.2 2D and 3D Fingertip Tracking 
• Left index fnger touching the back-of-device and hovering 
above it (2D regression, X, Y location of the fngertip). 

• Left thumb touching the front screen and hovering above it (2D 
regression, X, Y location of the fngertip). 

• Right index fnger touching the front screen and hovering above 
it (3D regression, X, Y, Z location of the fngertip). 
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Table 2: Results of 2D fngertip tracking in real-world and heatmap (HM) errors, and results in 3D and depth (Z-only) errors. 

2D Fingertip MAE (mm) 
General 

Heatmap RMSE (×10−2) 2D-PCK MAE (mm) 
2.78 
2.72 

Leave-1-out 
Heatmap RMSE (×10−2) 

2.97 
2.54 

2D-PCK 
92.40% 
93.91% 

Left Index 
Left Thumb 

2.04 
2.31 

2.16 
2.00 

95.85% 
96.72% 

3D Fingertip 
Right Index 

MAE (mm) Depth MAE (Z only, mm) 3D-PCK MAE (mm) 
5.46 

Depth MAE (Z only, mm) 
10.80 

3D-PCK 
89.93%4.11 8.25 90.70% 

5.2.1 Data Collection. 
We collected data from fve participants from a local campus 

(mean age: 28.0, two females). For the left index fnger and thumb, 
we asked the participants to hold the phone with their comfort-
able grip. They were asked to perform random fnger movements 
while walking around a lab. In total, approximately 49,000 images 
were collected. 2D (X, Y) location of the left thumb and left index 
fngertip are annotated manually. For the right index fnger, an 
Intel RealSense depth camera is mounted (Figure 12) on the phone 
only for collecting ground truth depth data, which is used for the 
purpose of training the deep neural network. The depth camera is 
not used during real-time inference and demonstration. Since the 
depth camera is tethered to a PC, participants remain seated in front 
of a green backdrop. In total, approximately 30,000 RGB and 30,000 
depth images were collected. 3D (X, Y, Z) location of the right index 
fngertip is annotated by the authors. The 2D heatmap is generated 
from the XY coordinates using the Gaussian kernel, while the depth 
map is generated based on the Z-value from a depth camera. All 
training for the fngertip tracking uses a PyTorch framework, with 
an initial learning rate of 1e-4, batch size of 64, and Adam [34] 
optimizer with a multi-step learning rate. 

Figure 13: Example results of 3D fngertip estimation. From 
left: far, close, closer, hovering, failure case and 3rd party 
(a person not in the dataset). The white point indicates the 
fngertip position and the size of the points indicates the 
inverse distance to the camera. 

5.2.2 Evaluation Procedure. 
In both 2D and 3D evaluations, we evaluated a user-dependent 

general accuracy and a cross-user validation (leave-1-user-out). 
In the general evaluation, we trained a general model using data 
from all participants while keeping 20% data randomly from each 
participant for testing. On the other hand, in the leave-1-user-out 
evaluation, we trained the network using 4 users’ data and evaluated 
the remaining user, for 5 folds. This aims to study the cross-user 
generalizability of the model. The results are shown in Table 2. 

5.2.3 Metrics. 
We use a mean absolute error (MAE) as the evaluation metric for 

the 2D real-world coordinates, of which the unit is in millimeters 
(mm), similar to related work [51, 67]. To measure the diference 
in heatmap result, we calculate the root mean square error (RMSE) 
in pixel-scale to show the similarity of the predicted heatmap and 
ground truth. We also include a Percentage of Correct Keypoint 
(PCK) metric with a threshold of 15 mm to represent a more intuitive 
accuracy. On the other hand, for the 3D fngertip results, as shown 
in Table 2 (bottom), there are two mean absolute errors (MAE) for 
either the 3D coordinates or the Z-value only, where the units are 
all in millimeters (mm). Additionally, the PCK becomes 3D-PCK 
which is based on the average 3D Euclidean distance between the 
estimated 3D fngertip position and the ground truth value. 

5.2.4 Results and Discussion. 
For the fngertip tracking, the 2D results have an acceptable accu-

racy (MAE: Left Index 2.04 mm, Left Thumb 2.31 mm) in the general 
models and a slightly larger error in cross-user models (MAE: Left 
Index 2.78 mm, Left Thumb 2.72 mm), where we believe an average 
error under 3 mm is sufcient for mobile interaction. For compari-
son, TouchPose [2] used a capacitive touchscreen to reconstruct full 
hand poses and it showed around 10 mm of error when all fngers 
are touching the screen (the evaluation setup is diferent from ours, 
hence not a direct comparison). Our system tracks the 2D position 
of only the thumb and index but achieved error of less than 3 mm 
accordingly. Importantly, the small diference between general and 
cross-user models indicates the generalizability to new users. 

By contrast, the mean errors of coordinates in 3D tracking in-
crease noticeably (MAE: General 4.11 mm, Leave-1-out 5.46 mm). 
This result is comparable with related work although the settings 
are not identical. For instance, DeepFishEye [51] tracks fve fnger-
tips and yielded errors of ∼20 mm for both index and thumb on the 
smartphone-sized screen. The depth (Z) value has a higher error 
(MAE of Z-only: General 8.25 mm, Leave-1-out 10.80 mm) when 
compared to the 2D results. This is because the depth (the distance 
from the camera) is much more difcult to estimate (with an error of 
8 mm∼10 mm), especially from a distorted, low-resolution fsheye 
image. In fact, estimating precise depth information from only a 2D 
image in real-time remains a challenging task in the CV literature. 
In addition, the human labeling process may have contributed to 
the increase in the error rate, especially when the fnger is very near 
to the camera, where a small imprecision in the human annotation 
may lead to a large error ofset. As we used a cropped ROI, when 
the fnger is extended to the extreme, it goes out of view and causes 
a failure prediction (as shown in Figure 13). In 2D tracking, the 
prediction jumps to other fngers while in 3D tracking it results in 
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Figure 14: The subjective feedback of participants for each application. 1=Disagree strongly, 7=Agree strongly. 

wrong depth estimation. This can be fxed by using a larger ROI, or 
via fltering. Nevertheless, the overall 3D-PCK is around 90% which 
means most of the estimated points are close to the ground truth 
and we suggest that 5 mm mean 3D position error and 10 mm mean 
depth error is acceptable for many use cases that do not require 
high precision, such as i) grouping the hover areas based on zones 
and ii) coarse fnger gestures or iii) PreTouch [24] and Air+Touch 
[14] style of interaction based on hover detection. 

6 USER STUDY 
To gather feedback and insight about our techniques and applica-
tions, we invited participants to try our system. In total, participants 
tried 13 mini applications (Figure 4-6) spanning the three pillars of 
the design space. For extra use cases such as the in-car scenario, 
we created a video example that has actual sensing results over-
laid (e.g., OpenPose’s tracking of body, face and fnger) and show 
it to participants. Please refer to the main video fgure and also 
supplementary video for demonstrations of all applications. 

6.1 Participants, Main Task and Protocol 
We recruited ten participants from a local University campus (one 
female, mean age: 28). None of these participants were from the 
data collection sessions. Among them, nine participants knew about 
360° cameras but only fve participants have used one before. 

We began the user study with an overall introduction, and then 
an introduction to each of the prototype applications. Participants 
were given the opportunity to freely try each application for as 
long as they like, usually lasting one to fve minutes for each. After 
trying out each application, participants completed a questionnaire 
with four questions on a 7-point Likert scale (Figure 14). Finally, 
a short interview was conducted to gather feedback and insights 

from the participants. They were asked about the most and least 
favorite aspects of their experience, and any other comments they 
had. The whole study lasted approximately 45 minutes. Participants 
were given a free drink as a token of appreciation. 

6.2 User Study Results and Discussion 
Figure 14 shows the subjective feedback of participants regarding 
the four questions. Results showed that most applications related to 
the body and surroundings (Demo 7-14) were well received by the 
participants, but less so for applications related to fnger interaction 
near the device (Demo 1-6). 

From the interview, the danger detection (Demo 7) was voted as 
the most desired application (six participants), followed by 3D list 
scrolling (two participants). Many participants expressed a high 
preference for danger detection, the reason being that it can only 
be enabled with such a unique setup and it is the most “valuable” 
feature. Two participants commented that they have seen the other 
applications elsewhere, but danger detection is new and useful to 
them. They further commented that the accuracy doesn’t need to 
be 100% accurate as there is high potential from this aspect alone. 

The VR video avatar (Demo 12) controller application was se-
lected as the most interesting application (six participants), followed 
by the Pokemon GO (Demo 10) hand-throwing game (two partic-
ipants’ frst choice and two participants’ second choice). Three 
participants commented that the VR avatar application is fun. One 
participant suggested that it is easy to become a VTuber by just 
holding this phone and another participant commented that it is 
convenient to just hold the phone within arm’s reach as there is no 
need to setup a camera from afar. Regarding Pokemon GO, partici-
pants commented that this real hand-throwing gesture will beneft 
some games. “Normally, you cannot play with your body, this is like 
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an arcade game which will increase the fun of the game” (P8). An-
other participant believes that it will be more fun if there are more 
variations of the throwing gestures (e.g., spinning the Poke ball). 

On the other hand, there was a consensus (four participants) 
that, many of the fnger sensing techniques (Demo 1-6) are rather 
gimmicky. Mainly, they commented that these fnger sensing tech-
niques can be enabled by other sensors such as capacitive sensor 
or radar, which will be more accurate. They see that it is possible 
to sense the various fnger input using 360° camera but they do not 
think that it is the best solution, considering that other types of 
sensors may be better. In addition, two participants commented 
that using menu to switch modes is a well-established method, 
hence there is no need to change to use a new, gimmicky method 
to switch modes (Demo 1, which fnger), which is more confusing. 

Other concerns from participants include robustness of sensing, 
occlusion problem, battery consumption, lack of usefulness of leg 
interaction and doubt that smartphones with built-in 360° camera 
will become mainstream. Surprisingly to us, participants did not 
complain about the non-fullscreen overlay UI we used to circumvent 
the camera API limitation. Finally, one of the rewarding comments 
was: “It’s cool to know that 360° has so many potentials” (P9), as this 
is well-aligned with the goal of this exploratory research. 

7 OVERALL DISCUSSION 
OmniSense broadens our understanding of the types of interactions 
users can perform on a mobile device with an omni-directional 
camera. We have implemented functional prototypes that integrate 
OmniSense’s multiple sensing capabilities to enable numerous pos-
sible applications and scenarios. From our experience in this inte-
gration and from the preliminary user study, we identifed open 
challenges and issues. For example, OmniSense techniques are pre-
ferred for body-based and surrounding-based interaction, but less 
so for the near device interaction (hand and fnger). Users found 
body-based and surrounding-based interaction unique, fun and 
useful. In contrast, they found near device interaction gimmicky 
and some said there is no need for such new methods. They also 
suggest that a customized sensor might be better in terms of robust-
ness and battery consumption (e.g., a capacitance sensor for hover 
detection). Nonetheless, our exploratory research here is an initial 
step to uncovering the potential of a single 360° camera for omni-
purpose sensing for improving mobile interaction. Optimization 
and detailed comparison work are left for future work. By exploring 
the breadth of design space and identifying the usability issues for 
this new class of mobile interface, we hope that OmniSense can 
empower users, researchers and manufacturers with an all-in-one 
sensing solution spanning multiple sensing pillars, for enabling 
novel applications in the pervasive mobile interaction. 

7.1 Is 360° Camera Essential? Potential Solution 
To Miniaturize 360° Camera Bump 

With the increasing FoV of cameras on modern smartphones (120° 
to 150°), do we require 360° camera for OmniSense? In fact, some 
use cases that we proposed in this paper can be possible with just a 
wide-angle camera. On the other hand, some use cases are simply 
not possible with only 120° to 150° FoV, such as the near device 

interaction (handedness, active fnger and back-of-device). Further-
more, it is not possible to enable multiple use cases simultaneously 
with small FoV. Thus, we suggest 360° camera is essential to achieve 
omni-purpose sensing for multiple use cases as outlined here. 

As a modern 360° camera uses two wide-angle lenses, there is a 
stitch line due to the stitching of the two lenses. There is also a tiny 
blind spot where the camera cannot see, which occurs for objects 
very close to the center of two lenses. For example, the gripping 
hand appears to be cut of when it rests on the bezel. Both of these 
did not cause a major issue in detection, because the neural network 
will be able to learn and adapt from these. 

Perhaps a major concern for the adoption of 360° cameras in 
modern smartphones is the size. Here, we suggest a potential solu-
tion to miniaturize it. In fact, under-display camera technology is 
becoming matured nowadays. When this technology is combined 
with a liquid lens that can be morphed on-demand (e.g., Tactus1), 
we envision that it is possible to achieve a smartphone form factor 
that looks no diferent than those available now, with a high screen 
to body ratio and not losing screen space due to fsheye lens. 

7.2 Body Pose Estimation Issues, Device 
Placement And Orientation 

For extracting body pose information, we used OpenPose [9] library 
with a single camera, where the body joints information is 2D 
only. Hence, it does not support true 3D spatial interaction. Other 
approaches such as VNect [48] supports real-time 3D human pose 
estimation with a single RGB camera, which we will experiment 
with in future work. 

In addition, the leg tracking was not robust enough for a smooth 
leg gesture interaction experience. This is due to two factors: i) 
occlusion — from the camera’s point of view, the hand holding 
the phone occludes part of the body, causing the lower body to 
appear as separated from the upper body. ii) shortened legs — as 
the hand holding the phone is around the chest height, from the 
camera’s point of view, the legs are further away and appear shorter 
compared to the upper body. Both these factors cause difculty 
for robust leg tracking when using the standard OpenPose model, 
which did not account for such issues. Nonetheless, we found that 
fsheye distortion is not a major issue, because the body is usually 
near the center of the image, as shown in Appendix A. We also 
found that cubemap projection improves the pose tracking slightly 
in some cases, but there is no clear winner between fsheye or 
cubemap. Ideally, a solution to improve this issue is to fne-tune 
the body pose estimation model with images collected from such 
a high viewpoint (e.g., the annotated dataset from EgoCap [54] or 
our dataset), which we leave for future work. 

Our experiments were conducted where the users hold the phone 
in front of their body, as if how they normally use a phone. However, 
there will be occasions where the hand is lowered. While we did 
not evaluate this condition, recent work by Lim et al. [43] and Hori 
et al. [25] showed that it is possible to infer body pose using a wide 
camera on the hand, pointing towards the body. We believe their 
result is generalizable to our approach. 

1Tactus Technology Tactile Touchscreen: https://www.youtube.com/watch?v= 
JelhR2iPuw0 

https://www.youtube.com/watch?v=JelhR2iPuw0
https://www.youtube.com/watch?v=JelhR2iPuw0
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7.3 Privacy Concern 
The use of such an omni-directional camera presents a number 
of privacy concerns. Such concerns have been addressed when 
cameras have been incorporated elsewhere. For example, some 
device manufacturers provide a physical kill-switch for a laptop 
camera. Similarly, this physical kill-switch approach can be adopted 
for a smartphone 360° camera, which the users can turn of when 
they do not need OmniSense. Manufacturers also use on-device 
machine learning inference and on-device processing, where the 
data are destroyed without ever leaving the device. This can provide 
users with verifable service guarantees to ofer them confdence in 
the use of the camera as an on-board only sensor. An alternative 
approach is to employ a low-resolution sensor, such as infrared, 
thermal or LiDAR cameras, where it is not possible to reconstruct 
details of the user’s face and identity. For example, Clarkson [15] 
captures a 360° sphere around the user for 100 days, where he 
intentionally uses a low-resolution camera with a fsheye lens to 
avoid privacy issues. Indeed, he shows that faces are too blurry to 
identify, yet it is possible to successfully recognize a lot of context 
with the low-resolution images. Hence, privacy with the use of a 
camera sensor can be addressed but it remains a constant challenge. 

8 LIMITATIONS AND FUTURE WORK 
In our implementation, real-time processing is performed on a 
desktop PC, and the result is sent back to the mobile device for 
displaying to the user. This is largely due to two reasons: i) lack 
of API to access raw camera images and ii) limited computing re-
sources on mobile devices. Future hardware improvements, system 
optimizations, and gaining API access to the full 360° camera im-
age will ensure OmniSense can run on the mobile device without 
requiring ofoading to edge devices. 

While a custom, single-purpose sensor may be more suitable 
for independent tasks such as fnger hovering or back-tap, it can 
be costly to add a custom sensor for every desired input modality. 
In contrast, we demonstrated that with the captured 360° video 
(equirectangular format), we can enable all sensing pillars simul-
taneously, including hand, fnger, full body and the surrounding 
environment. However, for the live demonstration, the lack of cam-
era API access means that we are limited to the screen capture 
method, which has an approximately 220° FoV. While this 220° FoV 
can cover multiple use cases simultaneously, such as near device 
+ bodily interaction (two sensing pillars), or upper body + front 
danger detection + environment sensing (three sensing pillars), it 
could not enable all sensing simultaneously. This problem will be 
solved by gaining API access to the raw image. 

Furthermore, there are a wide range of potential applications 
that can be enabled by OmniSense that we have yet to explore. So 
far, we have only implemented thirteen representative applications, 
which barely scratched the surface of all the possibilities. Other 
applications such as face/gait authentication, vital signs monitoring 
[68], indoor positioning, and autonomous driving are possible but 
require further research and development. We will explore such 
application areas in future work. While we have demonstrated the 
potential of such 360° camera on a mobile device, more engineering 
eforts are required to make it practical for real-world usage, with 
concerns about battery usage and processing speed. 

9 CONCLUSION 
We have presented OmniSense, a design space covering a broad 
range of input sensing and interaction techniques for mobile de-
vices, enabled by a single, built-in 360° camera. Furthermore, our 
prototypes demonstrated how this single sensor is capable of en-
abling various compelling use cases and applications. We con-
ducted a baseline evaluation and preliminary study. We hope this 
exploratory research showcased the potential of 360° camera for 
enabling novel interaction techniques for improving mobile inter-
action. And along with the workaround method that we provided, 
we hope these contributions to knowledge inspire future research 
on this topic. 
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A COMPARISON BETWEEN FISHEYE AND 
CUBEMAP PROJECTION FOR BODY POSE 
ESTIMATION 

Our observations suggest that existing body pose estimation model 
works well with the screen-captured fsheye image without requir-
ing further modifcation. However, we want to evaluate whether the 
undistortion step we applied has any signifcant advantage, because 
if there is none, then it is unnecessary to waste CPU resources on 
performing the undistortion. 

In order to examine this, we followed the protocol in MeCap [1], 
where we collected 144 images consisting of two diferent postures, 
three gestures and two phone-holding orientations, from four par-
ticipants. We asked the participants to vary their posture (standing 
and seated), keeping still and make some movements (hand and 
leg), and hold the phone in diferent orientations (tilted towards and 
away from the user). From these 144 captured fsheye images, we 
generate the undistorted images using cubemap projection, yield-
ing another 144 images. In total, these 288 images were manually 
annotated with body keypoints and then compared to OpenPose’s 
predicted joints keypoints (Figure 15) to derive error statistics. The 
error measurements are normalized by participant’s shoulder width 
[1]. We did not compare with perspective and equirectangular for-
mat because the distortion around the edge is too high for any 
meaningful comparison. 

A.1 Results and Discussion 
The results show that, in overall, the measured error diference is 
minimal between the two image formats, both with more missing 
joints and higher normalized error for the lower body parts, as 
shown in Table 3. Especially for the foot (toe and heel), they are 
frequently not detected by both OpenPose and human annotators, 
as they appear too small and frequently occluded when seated, 
which is highly challenging even for a human annotator. For both 
types of image formats, as the participants held the phone using 
the non-dominant hand (left), the joints on this side have a higher 
misalignment error rate due to i) occlusion by the hand holding 
the phone and ii) the wrist joint holding the phone is too close 
to the camera. In overall, there is no stand-out approach. We can 
summarize three key insights. 

• In some fsheye images, the body tracking is lost abruptly 
for the majority of the body parts. This happens in only 
3 out of the 144 images (2%) we collected and we visually 
confrmed this by re-running OpenPose over the video fle. 
This is mainly due to barrel distortion of the fsheye, whereas 
cubemap does not sufer from this. 

• When the phone is tilted towards users, both formats sufer 
from the issues of i) shortened leg and ii) occlusion by hand, 
where OpenPose fails to estimate the lower body parts (Fig-
ure 15 (d)) and sometimes confused the gripping hand for 
leg. In this case, fsheye is slightly better. 

• When users perform a kicking gesture, the leg extends to 
the edge of the fsheye image, which sufers from more dis-
tortion and hence causes lost tracking of the leg joints. In 
this case, cubemap projection is slightly better. Yet, cubemap 
sufers from its own issues, because it was cropped slightly 
for undistortion, hence the leg part appears bent and cut 
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(a) Seated | Flat (b) Standing | Flat (c) Seated | Tilted (d) Standing | Tilted 

Figure 15: Image examples captured for body pose estimation comparison using OpenPose (Top: Fisheye, Bottom: Cubemap). 

Table 3: Result of OpenPose vs. ground truth annotation on the two image formats (fsheye vs. cubemap projection). Face 
includes Nose, UpperNeck and HeadTop joints. Upper includes Shoulder, Elbow and Wrist joints. Lower includes Hip, Knee and 
Ankle joints. Foot includes BigToe, SmallToe and Heel joints. 

Fisheye Cubemap 

Mean Normalized Mean Normalized % Captured % Captured Misalignment Error Misalignment Error 

Overall 
Face 

Left Eye/Ear 
Right Eye/Ear 
Left Upper 
Right Upper 
Left Lower 
Right Lower 
Left Foot 
Right Foot 

83.00 
98.15 
98.61 
93.06 
100.00 
97.69 
82.64 
88.19 
39.58 
57.64 

0.08 
0.07 
0.03 
0.03 
0.11 
0.06 
0.18 
0.09 
0.04 
0.05 

79.86 
99.07 
99.31 
93.40 
100.00 
99.07 
75.00 
82.64 
34.72 
46.53 

0.09 
0.07 
0.04 
0.06 
0.15 
0.08 
0.16 
0.12 
0.04 
0.05 

of when it is being extended. This is especially obvious in 
seating posture where joints below the knees are cropped 
and hence incorrectly detected by OpenPose (Figure 15 (a)). 

To conclude, cubemap projection is able to maintain the correct 
size of the body, but when the user extends the leg extremely, it 
appears to bend and cropped at the seam between each side of 
the cubemap. In contrast, fsheye has better FoV coverage, but is 
slightly distorted near the edge, and has an unbalanced body size 
(big shoulder, short legs). Overall, in many scenarios that do not 
require leg tracking, both fsheye and cubemap work equally well. 

Therefore, we can save CPU resources by not performing undis-
tortion. While undistortion helps a little, the main issue is the high 
and tilted viewpoint from the camera, as users tend to hold the 

phone around chest height during mobile interaction. From this 
camera viewpoint, the upper body appears larger and the lower 
body appears smaller (Figure 15 (d)). Hence, this is not really a 
distortion problem, but a viewpoint problem. MeCap [1] appears to 
sufer from the same problem, where the authors did not evaluate 
the lower body parts (until the knee joint only). 

Another issue is the hand gripping the phone occludes a portion 
of the body, causing the upper body to appear to be separated from 
the lower body. This confuses the existing body pose estimation 
model. We suggest the ideal solution is to train a custom model that 
works with this viewpoint (short leg), and deals with distortion 
and hand occlusion directly, such as Mo2Cap2 [71], thereby saving 
processing cost. 
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